6 resultados para Low tension oxigen

em Deakin Research Online - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, advanced high strength steels (AHSS) have been used in a wide range of automotive applications; they may have property variations through the thickness and the properties may also be dependent of prior processing including pre-straining. In order to model forming processes precisely using, for example, finite element analysis, it is important that material input data should adequately reflect these effects. It is known that shape defects in roll forming are related to small strains in material that has undergone prior deformation in a different strain path. Much research has already been performed on the change in the Young’s Modulus once a steel sheet has been plastically deformed,however many of these tests have only been conducted using tensile testing, and therefore may not take into account differences in compressive and tensile unloading. This research investigates the effect of tensile pre-straining on bending behaviour for various types of material;in bending, one half of the sheet will load and unload in compression and hence experience deformation under a reversed stress. Four different materials were pre-strained in tension with 1%, 3%, 7%, 11% and 25% elongation. Using a free bending test, moment curvature diagrams were obtained for bending and unloading. The results showed that the characteristics of the moment curvature diagram depended on the degree of pre-straining; more highly strained samples showed an earlier elastic-plastic transformation and a decreased Young's Modulus during unloading. This was compared to previous literature results using only tensile tests. Our results could influence the modeling of springback in low tension sheet operations, such as roll forming.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of low-strain deformation behavior on curl and springback in advanced high strength steels (AHSS) was assessed using a bend-under-tension test. The effect of yielding behavior on curl and springback was examined by heat-treating two dual-phase steels to induce yield point elongation, while keeping a relatively constant tensile strength and a constant sheet thickness. A dual-phase and TRIP steel with similar initial thickness and tensile strengths were also examined to investigate the effect of work-hardening on curl and springback. It is shown that while current understanding limits prediction of curl and springback in bending under tension using only the initial sheet thickness and tensile strength, both the yielding and work-hardening behavior can affect the results. Explanations for these effects are proposed in terms of the discontinuous yielding and flow stress in the materials.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Disclosed are emulsions and microcapsules that comprise one or more substances with a low interfacial tension. Methods of making the emulsions and microcapsules as well as methods of using them are also disclosed. In some embodiments microbial oil is used. In some embodiments marine oil is used. In some embodiments the emulsion has a pH of greater than 6,0. In some embodiments the emulsion has a pH of less than 5,0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temper rolling and tension levelling are commonly used to manufacture flat rolled steel. Both processes lengthen the steel at strains up to 3% by applying a load and stretching the strip. By latering the balance between the load and the tension the formability of the low carbon and ultra low carbon steel may be optimised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The resolved shear stress is believed to play an important role in twin formation. The present study tests this idea for an extruded magnesium alloy by examining "tension" twinning in different grain orientations. Electron backscatter diffraction analysis is employed for alloy AZ31 tested in compression along the extrusion axis to strains between 0.008 and 0.015. For heavily twinned grains, it is seen that twinning occurs on 2.3 twin systems per grain on average. The active systems are also most commonly those with, or very near to, the highest Schmid factor. The most active system in multiply twinned grains accounts on average for ∼0.6 of the twinning events. In addition, it is found that the twin habit plane falls within 6° of the K1 plane. Orientations with the highest Schmid factors (0.45-0.5) for twinning display twin aspect ratios greater by ∼40% and twin number densities greater by ∼10 times than orientations with maximum Schmid factors for twinning of 0.15-0.2. Thus the Schmid factor for twinning is seen to affect nucleation more than thickening in the present material. Viscoplastic crystal plasticity simulations are employed to obtain approximations for the resolved shear stress. Both the twin aspect ratio and number density correlate quite well with this term. The effect of the former can be assumed to be linear and that of the latter follows a power law with exponent ∼13. Increased aspect ratios and number densities are seen at low Schmid factors and this may relate to stress fluctuations, caused most probably in the present material by the stress fields at the tips of blocked twins. Overall, it is evident that the dominance of twinning on high Schmid factor systems is preserved at the low strains examined in the present work, despite the stress fluctuations known to be present. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, electrospinnability as well as thermal, rheological, and morphological characteristics of low molecular weight hardwood organosolv lignin, as a potential precursor for carbon fiber, was investigated. Submicromter biobased fibers were electrospun from a wide range of polymer solutions with different ratios of organosolv lignin to polyacrylonitrile (PAN). Rheological studies were conducted by measuring viscosity, surface tension, and electrical conductivity of hybrid polymer solutions, and used to correlate electrospinning behavior of solutions with the morphology of the resultant electrospun composite fibers. Using scanning electron microscopy (SEM) images, the solutions that led to the formation of bead-free uniform fibers were found. Differential scanning calorimetry (DSC) analysis revealed that lignin-based fibers enjoy higher decomposition temperatures than that of pure PAN. Thermal stability of the lignin-based fibers was investigated by thermogravimetric analysis (TGA) indicating a high carbon yield of above 50% at 600 °C, which is highly crucial in the production of low-cost carbon fiber. It was also observed that organosolv lignin synergistically affects thermal decomposition of composite fibers. A significant lower activation energy was found for the pyrolysis of lignin-derived electrospun fibers compared to that of pure PAN.