54 resultados para Low pressure

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tube hydroforming has been widely used to produce automotive structural components due to the superior properties of the hydroformed parts in terms of their light weight and structural rigidity. Compared to the traditional manufacturing process for a closed-section member including stamping and followed by welding, tube-hydro forming leads to cost savings due to reduced tooling and material handling. However, the high pressure pumps and high tonnage press required in hydroforming, lead to increased capital investment reducing the cost benefits. This study explores low pressure tube hydro forming which reduces the internal fluid pressure and die closing force required to produce the hydroformed part. The experimental and numerical analysis was for low pressure hydro formed stainless steel tubes. Die filling conditions and thickness distributions are measured and critically analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydroforming is one option to reduce vehicle weight while increasing component stiffness and rigidity. This typically involves using a fluid to form a component with high internal pressure. Tube hydroforming has gained increasing interest in the automotive and aerospace industries because of its many advantages such as part consolidation, good quality of the formed part etc. The main advantage is that the uniform pressure can be transferred to whole part at the same time. In low pressure hydroforming, the internal pressure is significantly and the hydroformed section length of line stays almost the same as the circumference of the blank tube. This paper details the comparison between high and low pressure hydroforming. It is shown that the internal pressure and holding force required for low pressure hydroforming process is much less than that of high pressure. Also stress and thickness distribution are more uniform and the process is highly suitable for the forming of advanced high strength steels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing application of hydroforming for the production of automotive lightweight components is mainly due to the attainable advantages regarding part properties and improving technology of the forming equipment. However, the high pressure requirements during hydroforming decreases the costs benefit and make the part expensive. Another requirement of automotive industries is weight reduction and better crash performance. Thereby steel industries developed advanced high strength steels which have high strength, good formability and better crash performance. Even though the thickness of the sheet to form the component is reduced, the pressure requirement to form the part during expansion is still high during high pressure hydroforming. This paper details the comparison between high and low pressure tube hydroforming for the square cross-section geometry. It is determined that the internal pressure and die closing force required for low pressure tube hydroforming process is much less than that of high pressure tube hydroforming process. The stress and thickness distribution of the part during tube crushing were critically analysed. Further, the stress distribution and forming mode were studied in this paper. Also friction effect on both processes was discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research aimed to identify an optimum process in which aluminium cylinder heads can be cast, free from defects such as leakers, inherent to Low Pressure Die Casting. A series of Design of Experiments (DOE's) were performed on the process, which determined significant parameters effecting leaker formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hollow structures made of Advanced High Strength Steel (AHSS) are increasingly used in the automobile industry for crash and structural components. Generally high pressure hydroforming is used to form these tabular parts, which is a costly manufacturing process due to the high pressure equipment and large tonnage presses required. A new process termed low pressure hydroforming, where a pressurized tube is crushed between two dies, represents a more cost effective alternative due to the lower pressures and die closing forces required.

In this study the low pressure tube hydroforming of one simple and two different complex hollow shapes is investigated. The complexities of the pat1S compared to simple shapes are critically studied and the die filling conditions are investigated and discussed. FUl1hennore the thickness distributions over the circumference of the part during forming are analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced high strength steels (AHSS), in particular, are an attractive group materials, offering higher strength for improved energy absorption and the opportunity to reduce weight through the use of thinner gauges. High pressure tube hydroforming (HPTH) has been used to produce safety components for these steels, but it is expensive. Low pressure tube hydroforming (LPTH) is a lower cost alternative to form the safety components in the car. The side intrusion beam is the second most critical part after front rail in the car structure for passenger safety during crash. The forming as well as crash behaviour of a square side intrusion beam from both processes was investigated using numerical simulation. This paper investigated the interaction between the forming and crash response of these materials in order to evaluate their potential for use in vehicle design for crashworthiness. The energy absorption characteristics of the different tubes were calculated and the results from the numerical analyses compared for both hydroforming process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membrane filtration in municipal wastewater treatment is being increasingly used to improve the quality of water and increase the productivity of existing plants. However, membrane fouling encountered in reclamation of municipal wastewater represents serious design and operational concern. There are several fouling models which are being developed and used as a powerful tool to increase the understanding of the fouling mechanisms and its key characteristics that influence the design of optimal process and operating conditions. This study investigates and compares the fouling mechanisms of three different types of polymeric and ceramic ultrafiltration (UF) and microfiltration (MF) membranes in the recovery of water from secondary effluent. The result demonstrated that ceramic UF membrane produced very high quality of water compared to polymeric UF and ceramic MF membranes. Out of four fouling models used to fit the experimental flux data, cake filtration and pore narrowing and complete pore blocking models predicted the initial fluxes of polymeric UF membrane more accurately. On the other hand, the cake filtration and pore narrowing models predicted the performance of ceramic UF membrane. Whereas, pore narrowing model predicted the performance of ceramic MF membrane more precisely compared to other three models. Further, the application of unified membrane fouling index (UMFI) was used to assess the fouling potential of the membranes. Good agreement between UMFI and other models was found. © 2013 Copyright Balaban Desalination Publications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 Light-load exercise training with blood flow restriction (BFR) increases muscle strength and size. However, the hemodynamics of BFR exercise appear elevated compared with non-BFR exercise. This questions the suitability of BFR in special/clinical populations. Nevertheless, hemodynamics of standard prescription protocols for BFR and traditional heavy-load exercise have not been compared. We investigated the hemodynamics of two common BFR exercise methods and two traditional resistance exercises. Twelve young males completed four unilateral elbow flexion exercise trials in a balanced, randomized crossover design: (a) heavy load [HL; 80% one-repetition maximum (1-RM)]; (b) light load (LL; 20% 1-RM); and two other light-load trials with BFR applied (c) continuously at 80% resting systolic blood pressure (BFR-C) or (d) intermittently at 130% resting systolic blood pressure (BFR-I). Hemodynamics were measured at baseline, during exercise, and for 60-min post-exercise. Exercising heart rate, blood pressure, cardiac output, and rate–pressure product were significantly greater for HL and BFR-I compared with LL. The magnitude of hemodynamic stress for BFR-C was between that of HL and LL. These data show reduced hemodynamics for continuous low-pressure BFR exercise compared with intermittent high-pressure BFR in young healthy populations. BFR remains a potentially viable method to improve muscle mass and strength in special/clinical populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The determination of the amino acids proline, histidine, tyrosine, arginine, phenylalanine and tryptophan using flow injection analysis (FIA) with chemiluminescence detection is described. Proline was the only amino acid to exhibit chemiluminescence with the tris(2,2-bipyridyl)ruthenium(III) reaction at pH 10. While, histidine was found to selectively enhance the reaction of luminol with Mn(II) salts in a basic medium. Acidic potassium permanganate chemiluminescence was able to selectively determine tyrosine at pH 6.75. Low pressure separations using a C18 guard column allowed the simultaneous determination of tyrosine and tryptophan or phenylalanine and tryptophan with acidic potassium permanganate and copper(II)–amino acid–hydrogen peroxide chemiluminescence, respectively. Precision for each method was less than 3.9% (R.S.D.) for five replicates of a standard (1×10−5 M) and the detection limits ranged between 4×10−9 and 7×10−6 M. Preliminary investigations revealed that the methodology developed was able to selectively determine the individual amino acids in an equimolar mixture of the 20 naturally occurring amino acids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrosorption is generally defined as adsorption on the surfaces of charged electrodes by applying potential or current. Electrosorption deionization method is a low-pressure non-membrane deionization process, with the potential to be a low energy cost alternative for desalination in the future. In this paper, the principle and mechanism of the electrosorption deionization method are discussed, the materials and properties of the electrode used in electrosorption process are summarized and the application and prospect of this promising desalination method are reviewed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An out-of-autoclave rapid heating/low pressure technique has been used to cure polyethersulfone (PES) toughened HexPly 8552. Mode I and mode II tests were conducted to evaluate the fracture toughness of the composites and the effectiveness of cure was determined through thermal analysis. When compared to the autoclave process, the out-of-autoclave process resulted in a 52% reduction in processing time, without any sacrifice to the matrix intrinsic properties. Thermal analysis indicated an 8 °C improvement in glass transition temperature (Tg) as a result of an increased degree of cure. The out-of-autoclave process did lack in the ability to facilitate the removal of porosity which affected the fracture toughness results. The porosity is believed to have increased the mode I propagation fracture toughness. However its effect on mode II was quite deleterious, shown by scanning electron microscopy (SEM). This study managed to identify a number of key parameters associated with the out-of-autoclave process essential for further optimisation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thesis identified how advanced high strength steels perform compared to conventional steels in terms of weight reduction and crash performance for automotive bodies. The novel production method of low pressure tube hydroforming was applied to form these advanced steels to reduce the press tonnage and fluid pressure compared to the conventional high pressure process. In addition analytical models were developed to predict the force and pressure in the low pressure process.