34 resultados para Liver transplantation

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Liver transplantation-associated acute kidney injury (AKI) carries significant morbidity and mortality. We hypothesized that sodium bicarbonate would reduce the incidence and/or severity of liver transplantation-associated AKI. METHODS: In this double-blinded pilot RCT, adult patients undergoing orthotopic liver transplantation were randomized to an infusion of either 8.4% sodium bicarbonate (0.5 mEq/kg/h for the first hour; 0.15 mEq/kg/h until completion of surgery); (n = 30) or 0.9% sodium chloride (n = 30). Primary outcome: AKI within the first 48 h post-operatively.RESULTS: There were no significant differences between the two treatment groups with regard to baseline characteristics, model for end-stage liver disease and acute physiology and chronic health evaluation (APACHE) II scores, and pre-transplantation renal function. Intra-operative factors were similar for duration of surgery, blood product requirements, crystalloid and colloid volumes infused and requirements for vasoactive therapy. Eleven patients (37%) in the bicarbonate group and 10 patients (33%) in the sodium chloride group developed a post-operative AKI (p = 0.79). Bicarbonate infusion attenuated the degree of immediate post-operative metabolic acidosis; however, this effect dissipated by 48 h. There were no significant differences in ventilation hours, ICU or hospital length of stay, or mortality. CONCLUSIONS: The intra-operative infusion of sodium bicarbonate did not decrease the incidence of AKI in patients following orthotopic liver transplantation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background and Aim: The toxic milk (tx) mouse is a non-fatal animal model for the metabolic liver disorder, Wilson's disease. The tx mouse has a mutated gene for a copper-transporting protein, causing early copper accumulation in the liver and late accumulation in other tissues. The present study investigated the efficacy of liver cell transplantation (LCT) to correct the tx mouse phenotype.

Methods: Congenic hepatocytes were isolated and intrasplenically transplanted into 3–4-month-old tx mice, which were then placed on various copper-loaded diets to examine its influence on repopulation by transplanted cells. The control animals were age-matched untransplanted tx mice. Liver repopulation was determined by comparisons of restriction fragment length polymorphism ratios (DNA and mRNA), and copper levels were measured by atomic absorption spectroscopy.

Results: Repopulation in recipient tx mice was detected in 11 of 25 animals (44%) at 4 months after LCT. Dietary copper loading (whether given before or after LCT, or both) provided no growth advantage for donor cells, with similar repopulation incidences in all copper treatment groups. Overall, liver copper levels were significantly lower in repopulated animals (538 ± 68 µg/g, n = 11) compared to non-repopulated animals (866 ± 62 µg/g, n = 14) and untreated controls (910 ± 103 µg/g, n = 6; P < 0.05). This effect was also seen in the kidney and spleen. Brain copper levels remained unchanged.

Conclusion: Transplanted liver cells can proliferate and correct a non-fatal metabolic liver disease, with some restoration of hepatic copper homeostasis after 4 months leading to reduced copper levels in the liver and extrahepatic tissues, but not in the brain.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Histopathological scoring of disease stage uses descriptive categories without measuring the amount of fibrosis. Collagen, the major component of fibrous tissue, can be quantified by computer-assisted digital image analysis (DIA) using histological sections. We determined relationships between DIA, Ishak stage, and hepatic venous pressure gradient (HVPG) reflecting severity of fibrosis. One hundred fifteen patients with hepatitis C virus (HCV) who had undergone transplantation had 250 consecutive transjugular liver biopsies combined with HVPG (median length, 22 mm; median total portal tracts, 12), evaluated using the Ishak system and stained with Sirus red for DIA. Liver collagen was expressed as collagen proportionate area (CPA). Median CPA was 6% (0.2-45), correlating with Ishak stage (stage 6 range, 13%-45%), and with HVPG (r = 0.62; P < 0.001). Median CPA was 4.1% when HVPG was less than 6 mm Hg and 13.8% when HVPG was 6 mm Hg or more (P < 0.0001) and 6% when HVPG was less than 10 mm Hg and 17.3% when HVPG was 10 mm Hg or higher (P < 0.0001). Only CPA, not Ishak stage/grade, was independently associated by logistic regression, with HVPG of 6 mm Hg or more [odds ratio, 1.206; 95% confidence interval (CI), 1.094-1.331; P < 0.001], or HVPG of 10 mm Hg or more (odds ratio, 1.105; 95% CI, 1.026-1.191; P = 0.009). CPA increased by 50% (3.6%) compared with 20% in HVPG (1 mm Hg) in 38 patients with repeated biopsies. Conclusion: CPA assessed by DIA correlated with Ishak stage scores and HVPG measured contemporaneously. CPA was a better histological correlate with HVPG than Ishak stage, had a greater numerical change when HVPG was low, and resulted in further quantitation of fibrosis in cirrhosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lifestyle factors other than alcohol intake can lead to insidious outcomes from this surprisingly common condition. Assoc Prof David Cameron-Smith reviews current and potential management strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Biliary tract infection is associated with high mortality. This study investigated the effect of glucocorticoid pretreatment on lipopolysaccharide (LPS)-induced cholangitis. Methods: Rats undergoing either sham operation or ligation of the extrahepatic bile duct (BDL) for 2 weeks were randomly assigned to receive intravenous injections of dexamethasone (DX) or normal saline (NS) prior to infusing LPS into the biliary tract. The plasma levels of tumor necrosis factor-α (TNFα), chemokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2) as well as liver mRNA expression of MCP-1 and MIP-2 were determined. Infiltration of monocytes, Kupffer cells, and neutrophils in rat liver were studied with immunohistochemistry. Oxidative liver injury was measured by the malondialdehyde (MDA) content. Results: Dexamethasone pretreatment resulted in significantly decreased plasma levels of TNFα at 1 hour, MCP-1 and MIP-2 at 2 and 3 hours, and decreased liver MCP-1 mRNA expression at 3 hours following LPS infusion in BDL-DX rats than in BDL-NS rats. The number of inflammatory cells in the liver was significantly different between sham- and BDL-treated rats but was not affected by DX pretreatment. Pretreatment with DX resulted in significantly decreased liver MDA contents in the BDL-DX group than that in the BDL-NS group. Jaundiced rats pretreated with 5 mg DX prior to infusion of 1 g of LPS were 6.8 times more likely to survive than those that were not pretreated. Conclusions: Pretreatment of jaundiced, LPS-treated rats with a  supraphysiological dose of dexamethasone may rescue their lives by suppression of chemokine expression and alleviation of oxidative liver injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background
Intervention of the biliary system is frequently done in patients with obstructive jaundice and is associated with significant morbidity and mortality. The pathogenesis is unknown.
Materials and methods
A rat model of bile duct ligation (BDL) for 2 weeks was established in which biliary intervention was feasible by injection of normal saline through an indwelling catheter in the bile ducts. Plasma levels of C-C chemokine MCP-1 and C-X-C chemokine MIP-2 were measured by using ELISA. Blood monocytes, Kupffer cells, and neutrophils in the liver were characterized with antibodies to ED1, ED2, and myeloperoxidase (MPO). Lipid peroxidation was measured by malondialdehyde contents and apoptosis by TUNEL stain of the liver.
Results
Biliary intervention resulted in an increase of plasma MCP-1 and MIP-2 proteins by 1 h, which declined to normal level by 3 h in both sham and BDL rats. The levels in BDL rats were significantly higher than in sham at most points. There was a transient increase of ED1- and ED2-positive cells and MPO-staining cells in sham rat liver by 1 h after intervention. ED2-positive cells increased significantly by 1 h, while ED1- and MPO-positive cells decreased, yet insignificantly after intervention in BDL rats. The cell counts in BDL were constantly higher than in sham. Malondialdehyde increased precipitously in BDL by 3 h and was significantly higher than in sham throughout the study period. Parenchymal liver injury, manifested by elevated ALT, as well as apoptosis and necrosis of liver cells, was significantly increased in BDL rats, but not in sham rats.
Conclusion
Biliary intervention augments chemokine expression, precipitates lipid peroxidation, and aggravates liver injury in cholestatic rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postoperative cholangitis is a frequent and unpredictable complication of unknown etiology following bile duct reconstruction (BDR), particularly for biliary atresia. This study was undertaken to correlate the growth of bacteria in the hepaticojejunostomy with that in the liver after BDR. Quantitative bacterial culture was done on the specimens taken from the liver and from the hepaticojejunostomy at 1 week (group 1, n = 7), 1 month (group 2, n = 7), and 2 months (group 3, n = 7) following BDR with Roux-en-Y hepaticojejunostomy in piglets after 2 weeks of common bile duct ligation. The histological examination of the liver and the hepaticojejunostomy, as well as serial monitoring of hemogram and liver function tests, were performed to correlate the findings with the bacterial concentration of the liver and the hepaticojejunostomy following BDR. The bacterial concentration of the hepaticojejunostomy, expressed as log10 colony-forming units per gram (log10 CFU/g) of the hepaticojejunostomy, showed a progressive decrease from 8.38 ± 1.36 in group 1, 7.07 ± 2.54 in group 2, to 3.56 ± 1.31 in group 3 (p = 0.001). The log10 CFU/g of the liver also showed a progressive decrease from 5.02 ± 1.59 in group 1, 3.16 ± 1.56 in group 2, to 2.19 ± 1.09 in group 3 (p = 0.006). There was a significant positive correlation of the log10 CFU/g of the liver (n = 21) with that of the hepaticojejunostomy (n = 21) following BDR (r = 0.600, p = 0.004). Most of the infectious pathogens isolated from the liver were also isolated from the hepaticojejunostomy. The changes in hemoglobin, bilirubin, albumin, and ammonia significantly correlated with the changes of the bacterial concentration of the liver. The results of the study suggests that hepatic bacterial proliferation after BDR is significantly affected by microbial overgrowth in the bilioenteric anastomosis and is associated with deteriorated liver function and hemogram.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Opinions on the clinical course and outcome of renal transplantation in patients with primary immunoglobulin A nephropathy (IgAN) have been controversial.
Methods. We conducted a retrospective single-centre study on 542 kidney transplant recipients over the period 1984–2001. Long-term outcome and factors affecting recurrence in recipients with primary IgAN were analysed.
Results. Seventy-five patients (13.8%) had biopsy-proven IgAN as the cause of renal failure, and their mean duration of follow-up after transplantation was 100 ± 5.8 months. Fourteen (18.7%) of the 75 patients had biopsy-proven recurrent IgAN, diagnosed at 67.7 ± 11 months after transplantation. The risk of recurrence was not associated with HLA DR4 or B35. Graft failure occurred in five (35.7%) of the 14 patients: three due to IgAN and two due to chronic rejection. Three (4.9%) of the 61 patients without recurrent IgAN had graft failure, all due to chronic rejection. Graft survival was similar between living-related and cadaveric/living-unrelated patients (12-year graft survival, 88 and 72%, respectively, P = 0.616). Renal allograft survival within the first 12 years was better in patients with primary IgAN compared with those with other primary diseases (80 vs 51%, P = 0.001). Thereafter, IgAN patients showed an inferior graft survival (74 vs 97% in non-IgAN patients, P = 0.001).
Conclusions.
Our data suggested that around one-fifth of patients with primary IgAN developed recurrence by 5 years after transplantation. Recurrent IgA nephropathy in allografts runs an indolent course with favourable outcome in the first 12 years. However, the contribution of recurrent disease to graft loss becomes more significant on long-term follow up.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background – It has been recognized that specific fatty acids have the ability to directly influence the abundance of gene transcripts in organs such as the liver. However little comparison has been made between the effects of common dietary of fatty acids and there influence on gene expression.
Objectives – To determine the effect of diets rich saturated, monounsaturated and polyunsaturated on gene transcripts associated with liver fat metabolism. Specifically how these three classes of fatty acids influence mRNA levels of key transcriptional regulators (PGC1a, PPARa, PPARd, SREBP1C & ChREBP), fat oxidative (ACO, LCPT1, HMG-CoA lyase & UCP-2) and fat synthetic (ACC, MCD, GPAT & malic enzyme) genes were investigated.
Design - Rats (n=32) were evenly divided into four groups; a saturated fat diet, a monounsaturated fat diet, a polyunsaturated fat diet (each diet contained 23% fat) and standard rat chow (7% fat) diet and fed for 12 weeks. Real-time PCR analysis was performed on liver tissue.
Outcomes – PGC1a and SREBP1C increased 1.9 fold or greater in all groups. Conversely, PPARa, PPARd and ChREBP demonstrated variable changes with diet composition. Monounsaturated and polyunsaturated fat increased HMG-CoA lyase 2.8 fold, a response that was absent in the saturated fat fed animals. UCP-2 was decrease 3.0 fold by all dietary treatments. Malic enzyme was increased 2.8 and 2.4 fold with saturated and polyunsaturated diets respectively, yet was unaltered by the monounsaturated fat diet.
Conclusion – Modifications in common dietary fat composition initiated divergent gene responses in liver. These alterations were complex, with no uniform alteration in transcription factors with closely related functions (PPARfamily) and genes encoding proteins within the same metabolic pathway (fat oxidation or fat synthesis). Further studies are necessary to identify the predominant mechanisms regulating these differences in gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background – Squalene is a component of shark liver oil and has been speculated to have cholesterol reducing properties. High levels of total and LDL cholesterol have been shown to contribute to the development of chronic heart disease. The liver is central to the regulation of cholesterol metabolism and dietary intervention has long been recognized as a primary means to reduce the risks of chronic heart disease and related ailments.
Objectives – To determine the effect of dietary squalene supplementation on gene transcripts associated with liver cholesterol metabolism. Specifically the effect of squalene supplementation on mRNA levels for proteins that
regulate cholesterol biosynthesis (HMDH & ERG1), cholesterol elimination (SRB1), bile synthesis (CP7A1 & CP27A) and cholesterol excretion by the liver into bile (ABCG5 & ABCG8) was investigated.
Design – Rats (n=32) were divided into four groups and supplemented for 12 weeks. Groups one and two were fed a cholesterol rich diet for six weeks followed by six weeks of a cholesterol rich diet plus 1.75mg/day of squalene or 3.5 mg/day. Group three was fed a cholesterol rich diet for 12 weeks and group four was fed standard rat chow for 12 weeks. Blood lipid levels were monitored during the study and liver gene expression was determined at the
conclusion of the feeding trial via RT-PCR.
Outcomes – 3.5 mg/day of squalene lowered total and LDL cholesterol in rats consuming a cholesterol rich diet. This dose of squalene also resulted in constant levels of HMDH and ERG1 whereas the cholesterol rich diet halved mRNA levels of these enzymes. Furthermore 3.5 mg/day of squalene caused a greater than 3.0 fold increase in mRNA levels of the proteins SRB1, CP7A1, CP27A and ABCG5.
Conclusion – Dietary squalene supplementation at a dose of 3.5 mg/day lowers total and LDL cholesterol in rats consuming a cholesterol rich diet. These reductions in cholesterol levels may be due to increased cholesterol
elimination, bile synthesis and cholesterol excretion by the liver into bile mediated by changes in gene expression of key enzymes involved in these metabolic pathways