4 resultados para Liver Kinetics

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Six endurance-trained men [peak oxygen uptake (VO2) = 4.58 ± 0.50 (SE) l/min] completed 60 min of exercise at a workload requiring 68 ± 2% peak VO2 in an environmental chamber maintained at 35°C (<50% relative humidity) on two occasions, separated by at least 1 wk. Subjects ingested either a 6% glucose solution containing 1 µCi [3-3H]glucose/g glucose (CHO trial) or a sweet placebo (Con trial) during the trials. Rates of hepatic glucose production [HGP = glucose rate of appearance (Ra) in Con trial] and glucose disappearance (Rd), were measured using a primed, continuous infusion of [6,6-2H]glucose, corrected for gut-derived glucose (gut Ra) in the CHO trial. No differences in heart rate, VO2, respiratory exchange ratio, or rectal temperature were observed between trials. Plasma glucose concentrations were similar at rest but increased (P < 0.05) to a greater extent in the CHO trial compared with the Con trial. This was due to the absorption of ingested glucose in the CHO trial, because gut Ra after 30 and 50 min (16 ± 5 µmol · kg-1 · min-1) was higher (P < 0.05) compared with rest, whereas HGP during exercise was not different between trials. Glucose Rd was higher (P < 0.05) in the CHO trial after 30 and 50 min (48.0 ± 6.3 vs 34.6 ± 3.8 µmol · kg-1 · min-1, CHO vs. Con, respectively). These results indicate that ingestion of carbohydrate, at a rate of ~1.0 g/min, increases glucose Rd but does not blunt the rise in HGP during exercise in the heat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nine endurance-trained men exercised on a cycle ergometer at ~68% peak O2 uptake to the point of volitional fatigue [232 ± 14 (SE) min] while ingesting an 8% carbohydrate solution to determine how high glucose disposal could increase under physiological conditions. Plasma glucose kinetics were measured using a primed, continuous infusion of [6,6-2H]glucose and the appearance of ingested glucose, assessed from [3-3H]glucose that had been added to the carbohydrate drink. Plasma glucose was increased (P < 0.05) after 30 min of exercise but thereafter remained at the preexercise level. Glucose appearance rate (Ra) increased throughout exercise, reaching its peak value of 118 ± 7 µmol · kg-1 · min-1 at fatigue, whereas gut Ra increased continuously during exercise, peaking at 105 ± 10 µmol · kg-1 · min-1 at the point of fatigue. In contrast, liver glucose output never rose above resting levels at any time during exercise. Glucose disposal (Rd) increased throughout exercise, reaching a peak value of 118 ± 7 µmol · kg-1 · min-1 at fatigue. If we assume 95% oxidation of glucose Rd, estimated exogenous glucose oxidation at fatigue was 1.36 ± 0.08 g/min. The results of this study demonstrate that glucose uptake increases continuously during prolonged, strenuous exercise when carbohydrate is ingested and does not appear to limit exercise performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the effect of increased blood glucose availability on glucose kinetics during exercise. Five trained men cycled for 40 min at 77 ± 1% peak oxygen uptake on two occasions. During the second trial (Glu), glucose was infused at a rate equal to the average hepatic glucose production (HGP) measured during exercise in the control trial (Con). Glucose kinetics were measured by a primed continuous infusion ofd-[3-3H]glucose. Plasma glucose increased during exercise in both trials and was significantly higher in Glu. HGP was similar at rest (Con, 11.4 ± 1.2; Glu, 10.6 ± 0.6 μmol ⋅ kg−1 ⋅ min−1). After 40 min of exercise, HGP reached a peak of 40.2 ± 5.5 μmol ⋅ kg−1 ⋅ min−1in Con; however, in Glu, there was complete inhibition of the increase in HGP during exercise that never rose above the preexercise level. The rate of glucose disappearance was greater (P < 0.05) during the last 15 min of exercise in Glu. These results indicate that an increase in glucose availability inhibits the rise in HGP during exercise, suggesting that metabolic feedback signals can override feed-forward activation of HGP during strenuous exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To identify the mechanism underlying the exaggerated hyperglycemia during exercise in the heat, six trained men were studied during 40 min of cycling exercise at a workload requiring 65% peak pulmonary oxygen uptake (V˙o 2 peak) on two occasions at least 1 wk apart. On one occasion, the ambient temperature was 20°C [control (Con)], whereas on the other, it was 40°C [high temperature (HT)]. Rates of glucose appearance and disappearance were measured by using a primed continuous infusion of [6,6-2H]glucose. No differences in oxygen uptake during exercise were observed between trials. After 40 min of exercise, heart rate, rectal temperature, respiratory exchange ratio, and plasma lactate were all higher in HT compared with Con (P < 0.05). Plasma glucose levels were similar at rest (Con, 4.54 ± 0.19 mmol/l; HT, 4.81 ± 0.19 mmol/l) but increased to a greater extent during exercise in HT (6.96 ± 0.16) compared with Con (5.45 ± 0.18;P < 0.05). This was the result of a higher glucose rate of appearance in HT during the last 30 min of exercise. In contrast, the glucose rate of disappearance and metabolic clearance rate were not different at any time point during exercise. Plasma catecholamines were higher after 10 and 40 min of exercise in HT compared with Con (P < 0.05), whereas plasma glucagon, cortisol, and growth hormone were higher in HT after 40 min. These results indicate that the hyperglycemia observed during exercise in the heat is caused by an increase in liver glucose output without any change in whole body glucose utilization.