4 resultados para Liquid-liquid extraction 

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recently synthesized ionic liquid (IL) 2-butylthiolonium bis(trifluoromethanesulfonyl)amide, [mimSBu][NTf2], has been used for the extraction of copper(II) from aqueous solution. The pH of the aqueous phase decreases upon addition of [mimSBu]+, which is attributed to partial release of the hydrogen attached to the N(3) nitrogen atom of the imidazolium ring. The presence of sparingly soluble water in [mimSBu][NTf2] also is required in solvent extraction studies to promote the incorporation of Cu(II) into the [mimSBu][NTf2] ionic liquid phase. The labile copper(II) system formed by interacting with both the water and the IL cation component has been characterized by cyclic voltammetry as well as UV−vis, Raman, and 1H, 13C, and 15N NMR spectroscopies. The extraction process does not require the addition of a complexing agent or pH control of the aqueous phase. [mimSBu][NTf2] can be recovered from the labile copper−water−IL interacting system by washing with a strong acid. High selectivity of copper(II) extraction is achieved relative to that of other divalent cobalt(II), iron(II), and nickel(II) transition-metal cations. The course of microextraction of Cu2+ from aqueous media into the [mimSBu][NTf2] IL phase was monitored in situ by cyclic voltammetry using a well-defined process in which specific interaction with copper is believed to switch from the ionic liquid cation component, [mimSBu], to the [NTf2] anion during the course of electrochemical reduction from Cu(II) to Cu(I). The microextraction−voltammetry technique provides a fast and convenient method to determine whether an IL is able to extract electroactive metal ions from an aqueous solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ionic liquid (IL) 2-butylthiolonium bis(trifluoromethanesulfonyl)amide, [mimSBu][NTf2], facilitates the efficient extraction of silver(i) from aqueous media via interaction with both the cation and anion components of the IL. Studies with a conventional aqueous-IL two phase system as well as microextraction of silver(i) by a thick IL film adhered to an electrode monitored in situ by cyclic voltammetry, established that [mimSBu][NTf2] can extract electroactive silver(i) ions from an aqueous solution. The pH of the aqueous phase decreases upon addition of [mimSBu]+, which is attributed to partial release of the hydrogen attached to the N(3) nitrogen atom of the imidazolium ring. The presence of silver(i) further increase the acidity of the aqueous phase as a consequence of coordination with the IL cation component. Voltammetric and 1H and 13C NMR techniques have been used to establish the nature of the silver(i) complexes extracted, and show that the form of interaction with the IL differs from that outlined previously for the extraction of copper(ii). Insights on the competition established when silver(i) is extracted in the presence of copper(ii) are provided. Finally, it is noted that metallic silver can be directly electrodeposited at the electrode surface after extraction of silver(i) into [mimSBu][NTf2] and that back extraction of silver(i) into aqueous media is achieved by addition of an acidic aqueous solution.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A simple and sensitive HPLC method was developed to simultaneously determine CPT-11 and its major metabolite SN-38 in culture media and cell lysates. Camptothecin (CPT) was used as internal standard (I.S.). Compounds were eluted with acetonitrile–50 mM disodium hydrogen phosphate buffer containing 10 mM sodium 1-heptane-sulfonate, with the pH adjusted to 3.0 using 85% (w/v) orthophosphoric acid (27/73, v/v) by a Hyperclon ODS (C18) column (200 mm × 4.6 mm i.d.), with detection at excitation and emission wavelengths of 380 and 540 nm, respectively. The average extraction efficiencies were 96.9–108.3% for CPT-11 in culture media and 94.3–107.2% for CPT-11 in cell lysates; and 87.7–106.8% for SN-38 in culture media and 90.1–105.6% for SN-38 in cell lysates. Within- and between-day precision and accuracy varied from 0.1 to 10.3%. The limit of quantitation (precision and accuracy <20%) was 5.0 and 2.0 ng/ml for CPT-11 and 1.0 and 0.5 ng/ml for SN-38 in culture media and cell lysates, respectively. This method was successfully applied to quantitate the cellular accumulation and metabolism of CPT-11 and SN-38 in H4-II-E, a rat hepatoma cell line.