2 resultados para Liquid Layers

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present measurements of the thickness as a function of time of liquid films as they are squeezed between molecularly smooth mica surfaces. Three Newtonian, nonpolar liquids have been studied: octamethylcyclotetrasiloxane, n-tetradecane, and n-hexadecane. The film thicknesses are determined with an accuracy of 0.2 nm as they drain from ∼1 μm to a few molecular layers. Results are in excellent agreement with the Reynolds theory of lubrication for film thicknesses above 50 nm. For thinner films the drainage is slower than the theoretical prediction, which can be accounted for by assuming that the liquid within about two molecular layers of each solid surface does not undergo shear. In very thin films the continuum Reynolds theory breaks down, as drainage occurs in a series of abrupt steps whose size matches the thickness of molecular layers in the liquid. The presence of trace amounts of water has a dramatic effect on the drainage of a nonpolar liquid between hydrophilic surfaces, causing film rupture which is not observed in the dry liquids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of the force as a function of distance between two solids separated by a liquid crystal film give information on the structure of the film. We report such measurements for two molecularly smooth surfaces of mica separated by the nematic liquid crystal 4'-n-pentyl 4-cyanobiphenyl (5CB) in both the planar and homeotropic orientations at room temperature. The force is determined by measuring the deflection of a spring supporting one of the mica pieces, while an optical technique is used to measure the film thickness to an accuracy of ± (0.1-0.2) nm. The technique also allows the refractive indices of the nematic to be measured, and hence a determination of the average density and order parameter of the liquid crystal film as a function of its thickness. Three distinct forces were measured, each reflecting a type of ordering of the liquid crystal near the mica surfaces. The first one results from elastic déformation in the liquid crystal ; it was only observed in a twisted planar sample where the 5CB molecules are oriented in different directions at the two mica surfaces. The second, measured in both the planar and homeotropic orientations, is attributed to an enhanced order parameter near the surfaces. Both of these are monotonic repulsive forces measurable below 80 nm. Finally, there is a short-range force which oscillates as a function of thickness, up to about six molecular layers, between attraction and repulsion. This results from ordering of the molecules in layers adjacent to the smooth solid surface. It is observed in both the planar and homeotropic orientations, and also in isotropic liquids.