96 resultados para Lipase enzyme

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to its role in the storage of fat, adipose tissue acts as an endocrine organ, and it contains a functional renin-angiotensin system (RAS). Angiotensin-converting enzyme (ACE) plays a key role in the RAS by converting angiotensin I to the bioactive peptide angiotensin II (Ang II). In the present study, the effect of targeting the RAS in body energy homeostasis and glucose tolerance was determined in homozygous mice in which the gene for ACE had been deleted (ACE-/-) and compared with wild-type littermates. Compared with wild-type littermates, ACE-/- mice had lower body weight and a lower proportion of body fat, especially in the abdomen. ACE-/- mice had greater fed-state total energy expenditure (TEE) and resting energy expenditure (REE) than wild-type littermates. There were pronounced increases in gene expression of enzymes related to lipolysis and fatty acid oxidation (lipoprotein lipase, carnitine palmitoyl transferase, long-chain acetyl CoA dehydrogenase) in the liver of ACE-/- mice and also lower plasma leptin. In contrast, no differences were detected in daily food intake, activity, fed-state plasma lipids, or proportion of fat excrete in fecal matter. In conclusion, the reduction in ACE activity is associated with a decreased accumulation of body fat, especially in abdominal fat depots. The decreased body fat in ACE-/- mice is independent of food intake and appears to be due to a high energy expenditure related to increased metabolism of fatty acids in the liver, with the additional effect of increased glucose tolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A low molecular mass alkaliphilic extra-cellular lipase of Bacillus cereus MTCC 8372 was purified 35-fold by hydrophobic interaction (Octyl-Sepharose) chromatography. The purified enzyme was found to be electrophoretically pure by denaturing gel electrophoresis and possessed a molecular mass of approximately 8 kDa. It is a homopentamer of 40 kDa as revealed by native-PAGE. The lipase was optimally active at 55 °C and retained approximately half of its original activity after 40 min incubation at 55 °C. The enzyme was maximally active at pH 8.5. Mg 2+ , Cu 2+ , Ca 2+ , Hg 2+ , Al 3+ and Fe 3+ at 1 mM enhanced hydrolytic activity of the lipase. Interestingly, Hg 2+ ions synergized and Zn 2+ and Co 2+ ions antagonized the lipase activity. Among surfactants, Tween 80 promoted the lipase activity. Phenyl methyl sulfonyl fluoride (PMSF, 15 mM) decreased 98% of original activity of lipase. The lipase was highly specific towards p -nitrophenyl palmitate and showed a V max and K m of 0.70 mmol.mg −1 .min −1 and 32 mM for hydrolysis of p NPP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ten polymeric hydrogels were chemically synthesized by varying the concentrations of copolymer (DMA) and cross-linker (MBAm) molecules. An alkaline lipase of Bacillus coagulans MTCC-6375 was immobilized onto a poly (MAc-co-DMA-cl-MBAm)-hydrogel support at pH 8.5 and temperature 55ºC in 16 h. The bound lipase possessed 7.6 U.g⁻¹ (matrix) lipase activity with a specific activity of 18 U.mg⁻¹ protein. Hydrogel bound-lipase catalyzed esterification of oleic acid and ethanol to synthesize ethyl oleate in n-nonane. Various kinetic parameters were optimized to produce ethyl oleate using immobilized lipase. The optimal parameters were bound enzyme/substrate (E/S) ratio 0.62 mg/mM, ethanol/oleic acid 100 mM:75 mM or 100 mM:100 mM, incubation time 18 h and reaction temperature 55ºC that resulted in approximately 53% conversion of reactants into ethyl oleate in n-nonane. However, addition of a molecular sieve to the reaction mixture promoted the conversion to 58% in 18 h in n-nonane, which was equivalent to 55 mM of ethyl oleate produced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An alkaline thermo-tolerant lipase from Bacillus coagulans MTCC-6375 was purified and efficiently immobilized onto a synthetic hydrophobic poly (MAc-co-DMA-cl-MBAm)-hydrogel at pH 8.5 and temperature 55°C in 16 h. The hydrogel bound matrix possessed 7.6 IU g -1 matrix lipase activity with a specific activity of 18 IU mg -1 protein. Immobilized lipase was used to catalyze the esterification of lauric acid and ethanol to produce ethyl laurate in n-nonane. The reaction conditions that were optimized to produce ethyl laurate in n-nonane included enzyme/substrate (E/S) ratio, substrate concentration, reaction time and reaction temperature. The optimized parameters were E/S ratio of 0.5 mg mM -1, ethanol:lauric acid in ratio of 100 mM:100 mM and reaction time of 15 h at 65°C under continuous shaking (200 rpm). Optimized conditions resulted in 66% conversion of reactants into ethyl laurate in n-nonane in the presence of 300 mg molecular sieve mL -1 reaction mixture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis focused on the use of enzyme "lipase" rather than chemicals to produce concentrates of omega-3 fatty acids. These enzymatic techniques are cheaper, greener and environmentally friendly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic liquids (ILs) are solvents with numerous properties, which have been recently used for enzyme catalysis. In this work, five different ILs based on primary, tertiary, and quaternary ammonium cations coupled with mesylate and propionate anions were used as media for hydrolysis by the industrially relevant enzyme Thermomyces lanuginosus lipase (TLL). We correlated the TLL activity with various key IL and IL-water properties, including ion concentration, water activity (aw), kosmotropicity, hydrogen-bond basicity (β), and pH. The ion concentration was associated with aw, and the molar ratio of water/IL 5:1 (aw≈0.6) was found to be the threshold for assured TLL activity. Triethylammonium mesylate was the best IL owing to its kosmotropicity and ideal intrinsic β. The pH of IL-water mixtures is a key parameter related to the conformational change of TLL. We demonstrated the pH effect of the IL-water mixtures can be overcome by buffering, and the buffered system displayed the greatest activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research using 1,8-naphthalimide derivatives has expanded rapidly in recent years owing to their cell-permeable nature, ability to target certain cellular locations and fluorescent properties. Here we describe the synthesis of three new esters of 4-hydroxy-N-propyl-1,8-naphthalimide (NAP) and the development of a simple and sensitive assay protocol to measure the activity of carboxylester hydrolases. The NAP fluorophore was esterified with short (butyrate), medium (octanoate) and long (palmitate) chain fatty acids. The esters were spectroscopically characterised and their properties investigated for their suitability as assay substrates. The esters were found to be relatively stable under the conditions of the assay and levels of spontaneous hydrolysis were negligible. Non-specific hydrolysis by proteins such as bovine serum albumin was also minimal. A simple and rapid assay methodology was developed and used to analyse a range of commercially available enzymes that included enzymes defined as lipases, esterases and phospholipases. Clear differences were observed between the enzyme classes with respect to the hydrolysis of the various chain length esters, with lipases preferentially hydrolysing the medium chain ester, whereas esterases reacted more favourably with the short ester. The assay was found to be highly sensitive with the fluorophore detectable to the low nM range. These esters provide alternate substrates from established coumarin-based fluorophores, possessing distinctly different excitation (447 nm) and emission (555 nm) optima. Absorbing at 440-450 nm also offers the flexibility of analysis by UV-visible spectrophotometry. This represents the first instance of a naphthalimide-derived compound being used to analyse these enzymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipases, which can be immobilized and reused for many reaction cycles, are important enzymes with many industrial applications. A key challenge in lipase immobilization for catalysis is to open the lipase lid and maintain it in an open conformation in order to expose its active site. Here we have designed "tailor-made" graphene-based nanosupports for effective lipase (QLM) immobilization through molecular engineering, which is in general a grand challenge to control biophysicochemical interactions at the nano-bio interface. It was observed that increasing hydrophobic surface increased lipase activity due to opening of the helical lid present on lipase. The molecular mechanism of lid opening revealed in molecular dynamics simulations highlights the role of hydrophobic interactions at the interface. We demonstrated that the open and active form of lipase can be achieved and tuned with an optimized activity through chemical reduction of graphene oxide. This research is a major step toward designing nanomaterials as a platform for enhancing enzyme immobilization/activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic arsenic (jAs), a known human carcinogen, acts as a tumor promoter in part by inducing a rapid burst of reactive oxygen species (ROS) in mammalian cells. This causes oxidative stress and a subsequent increase in the level of cellular glutathione (GSH). Glutathione, a ubiquitous reducing sulfhydryl tripeptide, is involved in ROS detoxification and its increase may be part of an adaptive response to the oxidative stress. Glutathione related enzymes including glutathione reductase (GR) and glutathione S-transferase (GST) also play key roles in these processes. In this study the regulatory effects of inorganic arsenite (As111) on the activities of GSH-related enzymes were investigated in cultured human keratinocytes. Substantial increases in GR enzyme activity and mRNA levels were shown in keratinocytes and other human cell lines after exposure to low, subtoxic, micromolar concentrations of As111 for 24 h. Upregulation of GSH synthesis paralleled the upregulation of GR as shown by increases in glutamatecysteine lyase (GeL) enzyme activity and mRNA levels, cystine uptake, and intracellular GSH levels. Glutathione S-transferase activity was also shown to increase slightly in keratinocytes, but not in fibroblasts or breast tumor cells. Overall the results show that sublethal arsenic induces a multicomponent response in human keratinocytes that involves upregulation of parts, but not all of the GSH system and counteracts the acute toxic effects of jAs. The upregulation of GR has not previously been shown to be an integral part of this response, although GR is critical for maintaining levels of reduced GSH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To examine whether rosiglitazone alters gene expression of some key genes involved in mitochondrial biogenesis and oxidative capacity in skeletal muscle of type 2 diabetic patients, and whether this is associated with alterations in skeletal muscle oxidative capacity and lipid content.

Design: Skeletal muscle gene expression, mitochondrial protein content, oxidative capacity and lipid accumulation were measured in muscle biopsies obtained from diabetic patients, before and after 8 weeks of rosiglitazone treatment, and matched controls. Furthermore, whole-body insulin sensitivity and substrate utilization were assessed.

Subjects: Ten obese type 2 diabetic patients and 10 obese normoglycemic controls matched for age and BMI.

Methods: Gene expression and mitochondrial protein content of complexes I–V of the respiratory chain were measured by quantitative polymerase chain reaction and Western blotting, respectively. Histochemical staining was used to quantify lipid accumulation and complex II succinate dehydrogenase (SDH) activity. Insulin sensitivity and substrate utilization were measured during a hyperinsulinemic–euglycemic clamp with indirect calorimetry.

Results: Skeletal-muscle mRNA of PGC-1a and PPARb/d – but not of other genes involved in glucose, fat and oxidative metabolism – was significantly lower in diabetic patients (Po0.01). Rosiglitazone significantly increased PGC-1a (B2.2-fold, Po0.01) and PPARb/d (B2.6-fold, Po0.01), in parallel with an increase in insulin sensitivity, SDH activity and metabolic flexibility (Po0.01). Surprisingly, none of the measured mitochondrial proteins was reduced in type 2 diabetic patients, nor affected by rosiglitazone treatment. No alterations were seen in muscular fat accumulation upon treatment.

Conclusion: These results suggest that the insulin-sensitizing effect of rosiglitazone may involve an effect on muscular oxidative capacity, via PGC-1a and PPARb/d, independent of mitochondrial protein content and/or changes in intramyocellular lipid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vitro studies have demonstrated that angiotensin II (ANG II) induces adipocyte hyperplasia and hypertrophy. The aim of the present study was to determine the effect of angiotensin-converting enzyme inhibition on body weight, adiposity and blood pressure in Sprague–Dawley rats. From birth half of the animals (n = 15) were given water to drink, while the remainder were administered perindopril in their drinking water (2 mg/kg/day). Food intake, water intake and body weight were measured weekly. Blood pressure was measured by tail cuff plethysmography at 11-weeks. Body fat content and distribution were assessed using dual energy X-ray absorptiometry and Magnetic Resonance Imaging at 12 weeks. Animals administered with perindopril had a body fat proportion that was half that of controls. This was consistent with, but disproportionately greater than the observed differences in food intake and body weight. Perindopril treatment completely removed hypertension. We conclude that the chronic inhibition of ANG II synthesis from birth specifically reduces the development of adiposity in the rat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hormone-sensitive lipase (HSL), an important regulatory enzyme for triacylglycerol hydrolysis within skeletal muscle, is controlled by β-adrenergic signaling as well as intrinsic factors related to contraction and energy turnover. In the current study, we tested the capacity of 5′AMP-activated protein kinase (AMPK) to suppress β-adrenergic stimulation of HSL activity. Eight male subjects completed 60 min of cycle exercise at 70% VO2 peak on two occasions: either with normal (CON) or low (LG) pre-exercise muscle glycogen content, which is known to enhance exercise-induced AMPK activity. Muscle samples were obtained before and immediately after exercise. Pre-exercise glycogen averaged 375 ± 35 and 163 ± 27 mmol·kg–1 dm for CON and LG, respectively. AMPK α-2 was not different between trials at rest and was increased (3.7-fold, P<0.05) by exercise during LG only. HSL activity did not differ between trials at rest and increased (0 min: 1.67 ± 0.13; 60 min: 2.60 ± 0.26 mmol·min–1·kg–1 dm) in CON. The exercise-induced increase in HSL activity was attenuated by AMPK α-2 activation in LG. The attenuated HSL activity during LG occurred despite higher plasma epinephrine levels (60 min: CON, 1.96 ± 0.29 vs LG, 4.25 ± 0.60 nM, P<0.05) compared with CON. Despite the attenuated HSL activity in LG, IMTG was decreased by exercise (0 min: 27.1 ± 2.0; 60 min: 22.5 ± 2.0 mmol.kg–1 dm, P<0.05), whereas no net reduction occurred in CON. To confirm the apparent effect of AMPK on HSL activity, we performed experiments in muscle cell culture. The epineprine-induced increase in HSL activity was totally attenuated (P<0.05) by AICAR administration in L6 myotubes. These data provide new evidence indicating that AMPK is a major regulator of skeletal muscle HSL activity that can override β-adrenergic stimulation. However, the increased IMTG degradation in LG suggests factors other than HSL activity are important for IMTG degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hormone-sensitive lipase (HSL) is important for the degradation of triacylglycerol in adipose and muscle tissue, but the tissue-specific regulation of this enzyme is not fully understood. We investigated the effects of adrenergic stimulation and AMPK activation in vitro and in circumstances where AMPK activity and catecholamines are physiologically elevated in humans in vivo (during physical exercise) on HSL activity and phosphorylation at Ser563 and Ser660, the PKA regulatory sites, and Ser565, the AMPK regulatory site. In human experiments, skeletal muscle, subcutaneous adipose and venous blood samples were obtained before, at 15 and 90 min during, and 120 min after exercise. Skeletal muscle HSL activity was increased by ~80% at 15 min compared with rest and returned to resting rates at the cessation of and 120 min after exercise. Consistent with changes in plasma epinephrine, skeletal muscle HSL Ser563 and Ser660 phosphorylation were increased by 27% at 15 min (P < 0.05), remained elevated at 90 min, and returned to preexercise values postexercise. Skeletal muscle HSL Ser565 phosphorylation and AMPK signaling were increased at 90 min during, and after, exercise. Phosphorylation of adipose tissue HSL paralleled changes in skeletal muscle in vivo, except HSL Ser660 was elevated 80% in adipose compared with 35% in skeletal muscle during exercise. Studies in L6 myotubes and 3T3-L1 adipocytes revealed important tissue differences in the regulation of HSL. AMPK inhibited epinephrine-induced HSL activity in L6 myotubes and was associated with reduced HSL Ser660 but not Ser563 phosphorylation. HSL activity was reduced in L6 myotubes expressing constitutively active AMPK, confirming the inhibitory effects of AMPK on HSL activity. Conversely, in 3T3-L1 adipocytes, AMPK activation after epinephrine stimulation did not prevent HSL activity or glycerol release, which coincided with maintenance of HSL Ser660 phosphorylation. Taken together, these data indicate that HSL activity is maintained in the face of AMPK activation as a result of elevated HSL Ser660 phosphorylation in adipose tissue but not skeletal muscle.