9 resultados para Large disturbance

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years a large number of studies have examined body image concerns, and early symptoms of eating disturbance among children. However, to date there has been no synthesis or evaluation of these studies. The purpose of the present article is to review and evaluate the research that has examined body image concerns, and eating attitudes and behaviors among children 6 to 11 years of age. The instruments used to assess body image concerns and eating disturbance in children closely resemble those used with adolescents and adults. Overall, the psychometric data for these instruments are very good and there is sufficient evidence indicating that they can be used reliably and validly. In addition, similar variables to those studied in adolescent and adult samples have been found to be associated with children's body image concerns and early eating disturbance. These include gender, age, body mass index, race, sociocultural pressures, and self-concept. Our understanding of the development of body image concerns and eating disturbance in children is limited, however, by the fact that most of the research in this field has been based on cross-sectional data, and the studies have focused almost exclusively on weight-loss cognitions and behaviors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. For migratory birds the implications of environmental change may be difficult to predict because they use multiple sites during their annual cycle. Moreover, the migrants’ use of these sites may be interdependent. Along the flyway of the Svalbard pink-footed goose Anser brachyrhynchus population, Norwegian farmers use organized scaring to minimize goose use of their grasslands in spring. We assessed the consequences of this practice for regional site use of pink-footed geese along their spring migration route.

2. We used dynamic programming to find the sequence of migratory decisions that maximizes the fitness of female geese during spring migration, assuming scaring impinges on both food-intake rates and predation risk. The parameterization of the model was based on data gathered from individually marked pink-footed geese between 1991 and 2003.

3. The effect of scaring in terms of fitness and site use was most noticeable regarding food-intake rate. Scaring resulted in a redistribution of geese along the flyway. Furthermore, the outcomes of the modelling exercises were highly dependent on whether or not the geese were omniscient or naive: at moderate scaring levels naive geese were predicted to succumb.

4. On a qualitative basis there was good correspondence between the predictions from the model and the empirical evidence gathered to date.

5. Synthesis and applications. Besides highlighting the importance of learning and changing behaviour in an adaptive fashion, our modelling exercise indicated the potential vulnerability of the geese to abrupt environmental change. In addition, the exercise emphasized the interdependence of site use along the migratory flyway. The model supports the necessity for an integrated flyway management approach. In Norway, discussion is ongoing about the future management of the spring conflict between farming interests and geese. Farmers in north and mid-Norway have announced that they will expand the scaring campaign if a long-term solution, including a compensation scheme, is not forthcoming. If scaring on such a large scale is implemented abruptly, it may have severe consequences for the population: management of both the scaring intensity and its geographical extent is urgently required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased recognition of the global importance of salt marshes as 'blue carbon' (C) sinks has led to concern that salt marshes could release large amounts of stored C into the atmosphere (as CO2) if they continue undergoing disturbance, thereby accelerating climate change. Empirical evidence of C release following salt marsh habitat loss due to disturbance is rare, yet such information is essential for inclusion of salt marshes in greenhouse gas emission reduction and offset schemes. Here we investigated the stability of salt marsh (Spartinaalterniflora) sediment C levels following seagrass (Thallasiatestudinum) wrack accumulation; a form of disturbance common throughout the world that removes large areas of plant biomass in salt marshes. At our study site (St Joseph Bay, Florida, USA), we recorded 296 patches (7.5 ± 2.3 m(2) mean area ± SE) of vegetation loss (aged 3-12 months) in a salt marsh meadow the size of a soccer field (7 275 m(2)). Within these disturbed patches, levels of organic C in the subsurface zone (1-5 cm depth) were ~30% lower than the surrounding undisturbed meadow. Subsequent analyses showed that the decline in subsurface C levels in disturbed patches was due to loss of below-ground plant (salt marsh) biomass, which otherwise forms the main component of the long-term 'refractory' C stock. We conclude that disturbance to salt marsh habitat due to wrack accumulation can cause significant release of below-ground C; which could shift salt marshes from C sinks to C sources, depending on the intensity and scale of disturbance. This mechanism of C release is likely to increase in the future due to sea level rise; which could increase wrack production due to increasing storminess, and will facilitate delivery of wrack into salt marsh zones due to higher and more frequent inundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Habitat loss and invasive predators increasingly threaten global biodiversity. Here we use a landscape-scale experimental approach to explore the individual and synergistic effects of logging and an invasive predator, the red fox Vulpes vulpes on two common native arboreal vertebrates (a predator and prey species) in south-eastern Australia. We used site occupancy methods to evaluate different models evaluating the effects of site specific forest logging disturbance, lethal fox baiting and forest structural elements for explaining variation in site occupancy of a large monitor lizard Varanus varius, and a marsupial prey, the common ringtail possum Pseudocheirus peregrinus across a complex forest landscape. Site occupancy of ringtail possum was influenced by habitat resources and the structural complexity of forest, which indirectly mediated predation risk. Presence of fox baiting had no direct effect on the ringtail site occupancy. In contrast, access to prey resources and fox baiting appeared to best explain site occupancy variation in monitor lizards across the landscape. While these species are affected primarily by separate disturbances, synergistic interactions between the processes may intensify their effects. Our results demonstrate that species susceptibility to disturbance processes are highly idiosyncratic. This approach makes efficient use of integrated modelling to aid conservation management at both local and landscape levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fire is an integral disturbance shaping forest community dynamics over large scales. However, understanding the relationship between fire induced habitat disturbance and biodiversity remain equivocal. Ecological theories including the intermediate disturbance hypothesis (IDH) and the habitat accommodation model (HAM) offer predictive frameworks that could explain faunal responses to fire disturbances. We used an 80 year post-fire chronosequence to investigate small reptile community responses to fires in temperate forests across 74 sites. First, we evaluated if changes in species richness, abundance and evenness post-fire followed trends of prior predictions, including the IDH. Second, using competing models of fine scale habitat elements we evaluated the specific ways which fire influenced small reptiles. Third, we evaluated support for the HAM by examining compositional changes of reptile community post-fire. Relative abundance was positively correlated to age post-fire while richness and evenness showed no associations. The abundance trend was as expected based on the prior prediction of sustained population increase post-disturbance, but the trend for richness contradicted the prediction of highest diversity at intermediate levels of disturbance (according to IDH). Abundance changes were driven mainly by changes in overstorey, ground layer, and shelter, while richness and evenness did not associate with any vegetation parameter. Community composition was not strongly correlated to age since fire, thus support for the HAM was weak. Overall, in this ecosystem, frequent fire disturbances can be detrimental to small reptiles. Future studies utilizing approaches based on species traits could enhance our understanding of biodiversity patterns post-disturbance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recovery from disturbance is a key element of ecosystem persistence, and recovery can be influenced by large-scale regional differences and smaller local-scale variations in environmental conditions. Seagrass beds are an important yet threatened nearshore habitat and recover from disturbance by regrowth, vegetative extension and dispersive propagules. We described recovery pathways from small-scale disturbances in the seagrass Zostera nigricaulis in Port Phillip Bay, a large embayment in southeastern Australia, and tested whether these pathways differed between 5 regions with different hydrodynamic conditions and water quality, and between sites within those regions. Recovery pathways were broadly consistent. When aboveground biomass was removed, recovery, defined as the point at which disturbed areas converged with undisturbed controls, took from 2 to 8 mo, but when we removed above-and below-ground biomass, it took between 2 and 13 mo. There was no evidence of recovery resulting from sexual reproduction at any sites regardless of the presence of seeds in the sediment or flower production. We found no differences in recovery at the regional scale, but we found substantial differences between local sites. At some sites, rapid recovery occurred because seagrasses grew quickly, but at others, apparent recovery occurred because regrowth coincided with overall declines in cover of undisturbed areas. Recovery time was unrelated to seagrass canopy height, biomass, percentage cover, stem density, seed bank density, epiphyte cover or sediment organic matter in seagrass adjacent to disturbance experiments. This study highlights the importance of understanding fine-scale variation in local recovery mechanisms, which may override or obscure any regional signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mitigating the impacts of large-scale fires on biodiversity is becoming increasingly important as their frequency increases. In response, fire managers have engaged with the concept that retaining small unburnt residual areas of vegetation within extensively burnt landscapes may facilitate biodiversity conservation. However, it remains uncertain how the size and isolation of these unburnt residuals influence faunal distributions, persistence and recovery following fire. We used a replicated observation study to test bird responses to the size and isolation of unburnt residuals in a mallee woodland area recently burnt by a 28 000 ha wildfire in southern Australia. The scale of our study provided a rare opportunity to consider the responses of large mobile organisms to fire-induced habitat fragmentation. Within five replicated spatial blocks, we crossed two levels of isolation with large (5-7 ha) and small (1-3 ha) unburnt patches and matrix sites burnt 5 years previously. We compared these site types to six continuous (non-fragmented) unburnt sites. We surveyed each site on eight occasions. Most birds occurred more frequently in unburnt habitat beyond the extent of the fire. Bird responses to the availability and spatial distribution of unburnt remnants within the fire were largely influenced by their ability to use the recently burnt matrix. Occurrence of five species was higher in unburnt residuals when more of the landscape within 500 m was burnt. A fire refuge effect may be likely for two competitive species that occurred more frequently in unburnt residuals than in the burnt matrix or continuous unburnt habitat. For the weebill, recolonization following fire was likely to occur gradually over time from ex situ sources. Synthesis and applications. To maintain avian diversity in fire-prone landscapes, our results suggest a need to shift management focus from creating networks of small unburnt patches towards preserving large, intact areas of habitat. However, five species common to the burnt matrix preferentially selected residual patches when unburnt resources were locally scarce. Therefore, to benefit birds, land managers should limit the extent of applied burns and use narrow burns. When planning large burns, practitioners should consider that a number of species will remain absent from the landscape for several decades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: Knowledge of how climate and fire regimes affect regeneration in foundation species is critical to the conservation of entire ecosystems. Different stages of regeneration often require different ecological conditions, but dynamic constraints on regeneration are poorly known for species that regenerate only after infrequent wildfires. Focussing on a long-lived, foundation tree species (Eucalyptus regnans), we tested the hypothesis that the relative importance of fire regime variables (fire severity and time since previous fire) and environmental gradients on post-fire regeneration would shift as seedlings developed. Location: South-eastern Australia. Methods: Following a large (> 59,000 ha) summer wildfire in 2009, we sampled 131 sites (61 burnt) annually for four years (2009-2012), representing the range of environmental conditions in which E. regnans occurs. We analysed the effect of fire severity, time since fire and environmental variables on early regeneration processes critical for post-fire species distributions: seedling establishment, seedling density and growth through different height stages (10 cm, 25 cm, 50 cm and 200 cm). Results: The regeneration niche of E. regnans was defined by different factors at different stages of development. Initially, seedlings established prolifically on burnt sites, regardless of severity. Three years into the regeneration process, high-severity fire became the dominant driver of seedling persistence and growth over 25 cm. Growth over 50 cm was dependent on environmental conditions relating to elevation and precipitation. Main conclusions: Our results describe how fire occurrence, fire severity and environmental gradients affected seedling establishment, persistence and growth. The dynamic constraints on regeneration likely reflect temporal changes in the biotic and abiotic environment and variation in resource requirements during the early post-fire years. Our findings will enable more accurate forecasts of species distributions to assist forest conservation in the face of global changes in climate and fire regimes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding dispersal traits and adaptive potential is critically important when assessing the vulnerability of freshwater species in highly modified ecosystems. The present study investigates the population genetic structure of the Murray crayfish Euastacus armatus in the southern Murray–Darling Basin. This species has suffered significant population declines in sections of the Murray River in recent years, prompting the need for information on natural recruitment processes to help guide conservation. We assessed allele frequencies from 10 polymorphic microsatellite loci across 20 sites encompassing the majority of the species’ range. Low levels of gene flow were observed throughout hydrologically connected waterways, but significant spatial autocorrelation and low migration rate estimates reflect local genetic structuring and dispersal limitations, with home ranges limited to distances <50-km. Significant genetic differentiation of headwater populations upstream of barriers imposed by impoundments were also observed; however, population simulations demonstrate that these patterns likely reflect historical limitations to gene flow rather than contemporary anthropogenic impacts. Dispersal limitations, coupled with its biological traits, suggest that local populations are vulnerable to environmental disturbance with limited potential for natural recolonisation following population decline. We discuss the implications of these findings in the context of managing the recovery of the species.