12 resultados para Lanthanide luminescence

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This review article focuses primarily on the work carried in our laboratories over the last few years using luminescent and colorimetric sensors, where the anion recognition occurs through hydrogen bonding in organic or aqueous solvents. This review begins with the story of the discovery of fluorescent photoinduced electron transfer (PET) sensors for anions using charged neutral urea or thiourea receptors where both fluorescent and NMR spectroscopic methods monitored anion recognition. This work led to the development of dual luminescent and colorimetric anion sensors based on the use of the ICT based naphthalimide chromophore, where ions such as fluoride gave rise to changes in both the fluorescence and the absorption spectra of the sensors, but at different concentrations. Here, the former changes were due to hydrogen bonding interactions, whereas the latter was due to the deprotonation of acidic protons, giving rise to the formation of the bifluoride anion (HF2−). Modification of the 4-amino-l,8-naphthalimide moiety has facilitated the formation of colorimetric anion sensors that work both in organic or aqueous solutions. Such charge neutral receptor motifs have also been incorporated into organic scaffolds with norbomyl and calixarene backbones, which have enabled us to produce anion directed self-assembled structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Article Outline
• Introduction
• Photoluminescence
• General Principles
• Structural and Environmental Influences on Photoluminescence
• The Relationship between Photoluminescence Intensity and Analyte Concentration
• Excitation and Emission Spectra
• Chemiluminescence
• Bioluminescence
• Other Types of Luminescence
• Further Reading

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sr2Mg(B03)2 doped with Eu was synthesized respectively in air and weak reducing atmosphere (combustion of carbon particle), whose photoluminescence characteristics and structure were also studied at room-temperature. In air, the fluorescent body's color was white for different synthesized temperatures. At room temperature, the sample was excited and showed red typical emission spectrum of Eu3+ whose emission apex were sharp near 612 nm and emission spect~m was made up of the charge transformation band (CTB) of Eu3 + and excitation spectrum of 4f→4f high energy level transition, then reached the area of VUV. However, under reducing atmosphere (combustion of carbon particles), the color of the sample yielded was yellow, whose color became deeper with increasing temperature and showed phase transition. Using UV excitation, the luminescence of yellow sample was very weak. In a complicated broad spectrum at visible light area, the red emission spectrum of Eu2+ was not observed. Crystal structure and luminescence of the sample were completely different from the results of Diaz and Keszler. Two samples were prepared under oxidation and reducing atmosphere at high temperature, which were different on crystal structure and microstructure. By studying Sr2Mg(B03)2:Eu3+ a series of directional faults or educts were found, because Eu3 + ions substituted for Sr2 + ions. However, microstructure of Sr2Mg(B03 )2: Eu2 + is more complicated, whose excitation spectrum might be excited by Eu2 +. By XRD patten of the samples, phase transitibn could be found. Twins and clusters that were formed from point defect such as interstitial atom and big angle crystal boundary could be found by TEM.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lasting glow: Under femtosecond laser irradiation, graphene oxide nanoparticles (GONs) give strong two-photon luminescence (TPL; see picture). The presence of GONs also induces microbubbling, which causes cell death at an order of magnitude lower laser power than when cells are not labeled. The results show that GONs can be used for TPL-based imaging and photothermal cancer therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report synthesis, characterization, and properties of a multifunctional oxalate framework, {KDy(C2O4)2(H2O)4}n (1) (C2O42- = oxalate dianion) composed of two absolutely different metal ions in terms of their size, charge, and electronic configuration. Dehydrated framework (1′) exhibits permanent porosity and interesting solvent (H2O, MeOH, CH3CN, and EtOH) vapor sorption characteristics based on specific interactions with unsaturated alkali metal sites on the pore surface. Compound 1 shows solvent responsive bimodal magnetic and luminescence properties related to the DyIII center. Compound 1 exhibits reversible ferromagnetic to antiferromagnetric phase transition upon dehydration and rehydration, hitherto unknown for any lanthanide based coordination polymer or metal-organic frameworks. Both the compounds 1 and 1′ exhibit slow magnetic relaxation with very high anisotropic barrier (417 ± 9 K for 1 and 418 ± 7 K for 1′) which has been ascribed to the single ion magnetic anisotropy of the DyIII centers. Nevertheless, compound 1 shows a metal based luminescence property in the visible region and H2O molecules exhibit the strongest quenching effect compared to other solvents MeOH, MeCN, and EtOH, evoking 1′ as a potential H2O sensor.