3 resultados para Landforms

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The existence of a very large Lake Chad during the late Quaternary, Megalake Chad, has long been questioned. A Megalake Chad would present strong evidence for climatic fluctuations of great magnitude during the Holocene in tropical Africa. In this paper we used satellite data from Landsat and Modis sensors to collect and analyse new information on landforms in a 2 000 000 km2 region of the Lake Chad Basin. We detected 2300 km of remains marking the ancient shoreline of Megalake Chad. The satellite data also indicated many Saharan rivers and relict deltas leading to the long paleoshoreline. Large dunefield flattenings were observed and interpreted as the result of wave-cut erosion by the paleolake. Similarities were noticed between the landforms observed along the paleoshoreline of Megalake Chad and that of the former Aral Sea. This finding has significant consequences for reconstructing paleohydrology and paleoenvironments through the Lake Chad basin, and continental climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integration of phylogenetics, phylogeography and palaeoenvironmental studies is providing major insights into the historical forces that have shaped the Earth’s biomes. Yet our present view is biased towards arctic and temperate/tropical forest regions, with very little focus on the extensive arid regions of the planet. The Australian arid zone is one of the largest desert landform systems in the world, with a unique, diverse and relatively well-studied biota. With foci on palaeoenvironmental and molecular data, we here review what is known about the assembly and maintenance of this biome in the context of its physical history, and in comparison with other mesic biomes. Aridification of Australia began in the Mid-Miocene, around 15 million years, but fully arid landforms in central Australia appeared much later, around 1–4 million years. Dated molecular phylogenies of diverse taxa show the deepest divergences of arid-adapted taxa from the Mid-Miocene, consistent with the onset of desiccation. There is evidence of arid-adapted taxa evolving from mesicadapted ancestors, and also of speciation within the arid zone. There is no evidence for an increase in speciation rate during the Pleistocene, and most arid-zone species lineages date to the Pliocene or earlier. The last 0.8 million years have seen major fluctuations of the arid zone, with large areas covered by mobile sand dunes during glacial maxima. Some large, vagile taxa show patterns of recent expansion and migration throughout the arid zone, in parallel with the ice sheet-imposed range shifts in Northern Hemisphere taxa. Yet other taxa show high lineage diversity and strong phylogeographical structure, indicating persistence in multiple localised refugia over several glacial maxima. Similar to the Northern Hemisphere, Pleistocene range shifts have produced suture zones, creating the opportunity for diversification and speciation through hybridisation, polyploidy and parthenogenesis. This review highlights the opportunities that development of arid conditions provides for rapid and diverse evolutionary radiations, and re-enforces the emerging view that Pleistocene environmental change can have diverse impacts on genetic structure and diversity in different biomes. There is a clear need for more detailed and targeted phylogeographical studies of Australia’s arid biota and we suggest a framework and a set of a priori hypotheses by which to proceed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coasts composed of resistant lithologies such as granite are generally highly resistant to erosion. They tend to evolve over multiple sea level cycles with highstands acting to remove subaerially weathered material. This often results in a landscape dominated by plunging cliffs with shore platforms rarely occurring. The long-term evolution of these landforms means that throughout the Quaternary these coasts have been variably exposed to different sea level elevations which means erosion may have been concentrated at different elevations from today. Investigations of the submarine landscape of granitic coasts have however been hindered by an inability to accurately image the nearshore morphology. Only with the advent of multibeam sonar and aerial laser surveying can topographic data now be seamlessly collected from above and below sea level. This study tests the utility of these techniques and finds that very accurate measurements can be made of the nearshore thereby allowing researchers to study the submarine profile with the same accuracy as the subaerial profile. From a combination of terrestrial and marine LiDAR data with multibeam sonar data, it is found that the morphology of granite domes is virtually unaffected by erosion at sea level. It appears that evolution of these landscapes on the coast is a very slow process with modern sea level acting only to remove subaerially weathered debris. The size and orientation of the joints determines the erosional potential of the granite. Where joints are densely spaced (<2 m apart) or the bedrock is highly weathered can semi-horizontal surfaces form.