7 resultados para Landcare

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The soil-borne plant pathogen Phytophthora cinnamomi occurs in most Australian states. It is pathogenic to many Australian species, particularly the Proteaceae, Fabaceae, Dillineaceae and Epacridaceae. In Western Australia, c. 2000 of the 9000 endemic plant species are directly affected by the disease. The epidemic of plant deaths caused by P. cinnamomi is recognised as one of 11 Key Threatening Processes to the Australian Environment, and is now also acknowledged as a potential threat fauna in a range of communities. The implications of landscape modification due to the effects of P. cinnamomi dieback prompted our research, designed to measure the distribution and abundance of small mammals in disease-affected ecosystems. This study was in the Jarrah (Eucalyptus marginata) forests in the Darling Range, Western Australia and measured the distribution and abundance of one small mammal species, the Mardo (Antechinus flavipes) by Elliott trapping in forests with (1) high, (2) mixed and (3) no evidence of Phytophthora dieback. Trap success was highest in sites with no effect of Phytophthora (7.3 animals per 100 trap nights), whereas the lowest trap success was recorded at the high impact sites (0.67 animals per 100 trap night). There was a significant difference in trap success of Mardos in Elliott trapping over 1800 trap nights (x2= 23.19, d.f = 5, p < 0.001). An examination of the distribution of individuals and sexes suggests that Phytophthora-affected sites act as sinks for Mardos, while source areas are healthy, unaffected Jarrah forest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wildlife managers are often faced with the difficult task of determining the distribution of species, and their preferred habitats, at large spatial scales. This task is even more challenging when the species of concern is in low abundance and/or the terrain is largely inaccessible. Spatially explicit distribution models, derived from multivariate statistical analyses and implemented in a geographic information system (GIS), can be used to predict the distributions of species and their habitats, thus making them a useful conservation tool. We present two such models: one for a dasyurid, the Swamp Antechinus (Antechinus minimus), and the other for a ground-dwelling bird, the Rufous Bristlebird (Dasyornis broadbenti), both of which are rare species occurring in the coastal heathlands of south-western Victoria. Models were generated using generalized linear modelling (GLM) techniques with species presence or absence as the independent variable and a series of landscape variables derived from GIS layers and high-resolution imagery as the predictors. The most parsimonious model, based on the Akaike Information Criterion, for each species then was extrapolated spatially in a GIS. Probability of species presence was used as an index of habitat suitability. Because habitat fragmentation is thought to be one of the major threats to these species, an assessment of the spatial distribution of suitable habitat across the landscape is vital in prescribing management actions to prevent further habitat fragmentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of fire to fauna management, particularly for endangered species, is a significant issue for wildlife managers. Mammals respond to fire regimes including intensity, frequency and season of occurrence, and changes in fire-regimes are implicated in detrimental effects on mammal communities. For many species temporal habitat change is a key factor affecting the persistence of populations. These species require the option of colonising the shifting habitat mosaic. There is substantial evidence that species such as the native rodents New Holland Mouse (Pseudomys novaehollandiae) and Heath Rat (Pseudomys shortridgei) are early successional species dependent on such temporal habitat changes. In conrast species such as the dasyurid marsupial, Swamp Antechinus (Antechinus minimus) are late successional species, which may take up to 20 years to recolonise. In many situations ecological fire regimes need to be implemented to increase areas of suitable habitat for population expansion and reintroductions. This paper assesses research findings and the development of management actions incorporating ecological fire regimes for the recovery of Pseudomyine rodents and the Swamp Antechinus. Spatially explicit models are required to determine changes and patterns at the landscape level. The prospect of global climate change also is of significance and needs to be assessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The single most important asset for the conservation of Australia’s unique and globally significant biodiversity is the National Reserve System, a mosaic of over 10,000 discrete protected areas on land on all tenures: government, Indigenous and private,including on-farm covenants, as well as state, territory and Commonwealth marine parks and reserves.THE NATIONAL RESERVE SYSTEMIn this report, we cover major National Reserve System initiatives that have occurred in the period 2002 to the present and highlight issues affecting progress toward agreed national objectives. We define a minimum standard for the National Reserve System to comprehensively, adequately and representatively protect Australia’s ecosystem and species diversity on sea and land. Using government protected area, species and other relevant spatial data, we quantify gaps: those areas needing to move from the current National Reserve System to one which meets this standard. We also provide new estimates of financial investments in protected areas and of the benefits that protected areas secure for society. Protected areas primarily serve to secure Australia’s native plants and animals against extinction, and to promote their recovery.BENEFITSProtected areas also secure ecosystem services that provide economic benefits forhuman communities including water, soil and beneficial species conservation, climatemoderation, social, cultural and health benefits. On land, we estimate these benefitsare worth over $38 billion a year, by applying data collated by the Ecosystem ServicesPartnership. A much larger figure is estimated to have been secured by marineprotected areas in the form of moderation of climate and impact of extreme eventsby reef and mangrove ecosystems. While these estimates have not been verified bystudies specific to Australia, they are indicative of a very large economic contributionof protected areas. Visitors to national parks and nature reserves spend over $23.6 billion a year in Australia, generating tax revenue for state and territory governments of $2.36 billion a year. All these economic benefits taken together greatly exceed the aggregate annual protected area expansion and management spending by all Australian governments, estimated to be ~$1.28 billion a year. It is clear that Australian society is benefiting far greater than its governments’ investment into strategic growth and maintenance of the National Reserve System.Government investment and policy settings play a leading role in strategic growth of the National Reserve System in Australia, and provide a critical stimulus fornon-government investment. Unprecedented expansion of the National Reserve System followed an historic boost in Australian Government funding under Caring for Our Country 2008–2013. This expansion was highly economical for the Australian Government, costing an average of only $44.40 per hectare to buy and protect land forever. State governments have contributed about six times this amount toward the expansion of the National Reserve System, after including in-perpetuity protected area management costs. The growth of Indigenous Protected Areas by the Australian Government has cost ~$26 per hectare on average, including management costs capitalised in-perpetuity, while also delivering Indigenous social and economic outcomes. The aggregate annual investment by all Australian governments has been ~$72.6 million per year on protected area growth and ~$1.21 billion per year on recurrent management costs. For the first time in almost two decades, however, the Australian Government’s National Reserve System Program, comprising a specialist administrative unit and funding allocation, was terminated in late 2012. This program was fundamental in driving significant strategic growth in Australia’s protected area estate. It is highly unlikely that Australia can achieve its long-standing commitments to an ecologically representative National Reserve System, and prevent major biodiversity loss, without this dedicated funding pool. The Australian Government has budgeted ~$400 million per year over the next five years (2013-2018) under the National Landcare and related programs. This funding program should give high priority to delivery of national protected area commitments by providing a distinct National Reserve System funding allocation. Under the Convention on Biological Diversity (CBD), Australia has committed to bringing at least 17 percent of terrestrial and at least 10 per cent of marine areas into ecologically representative, well-connected systems of protected areas by 2020 (Aichi Target 11).BIODIVERSITY CONSERVATIONAustralia also has an agreed intergovernmental Strategy for developing a comprehensive, adequate and representative National Reserve System on land andsea that, if implemented, would deliver on this CBD target. Due to dramatic recent growth, the National Reserve System covers 16.5 per cent of Australia’s land area, with highly protected areas, such as national parks, covering 8.3 per cent. The marine National Reserve System extends over one-third of Australian waters with highly protected areas such as marine national parks, no-take or green zones covering 13.5 per cent. Growth has been uneven however, and the National Reserve System is still far from meeting Aichi Target 11, which requires that it also be ecologically representative and well-connected. On land, 1,655 of 5,815 ecosystems and habitats for 138 of 1,613 threatened species remain unprotected. Nonetheless, 436 terrestrial ecosystems and 176 threatened terrestrial species attained minimum standards of protection due to growth of the National Reserve System on land between 2002 and 2012. The gap for ecosystem protection on land – the area needed to bring all ecosystems to the minimum standard of protection – closed by a very substantial 20 million hectares (from 77 down to 57 million hectares) between 2002 and 2012, not including threatened species protection gaps. Threatened species attaining a minimum standard for habitat protection increased from 27 per cent to 38 per cent over the decade 2002–2012. A low proportion of critically endangered species meeting the standard (29 per cent) and the high proportion with no protection at all (20 per cent) are cause for concern, but one which should be relatively easy to amend, as the distributions of these species tend to be small and localised. Protected area connectivity has increased modestly for terrestrial protected areas in terms of the median distance between neighbouring protected areas, but this progress has been undermined by increasing land use intensity in landscapes between protected areas.A comprehensive, adequate and representative marine reserve system, which meetsa standard of 15 per cent of each of 2,420 marine ecosystems and 30 per cent of thehabitats of each of 177 marine species of national environmental significance, wouldrequire expansion of marine national parks, no-take or green zones up to nearly 30per cent of state and Australian waters, not substantially different in overall extentfrom that of the current marine reserve system, but different in configuration.Protection of climate change refugia, connectivity and special places for biodiversityis still low and requires high priority attention. FINANCING TO FILL GAPS AND MEET COMMITMENTSIf the ‘comprehensiveness’ and ‘representativeness’ targets in the agreed terrestrial National Reserve System Strategy were met by 2020, Australia would be likely to have met the ‘ecologically representative’ requirement of Aichi Target 11. This would requireexpanding the terrestrial reserve system by at least 25 million hectares. Considering that the terrestrial ecosystem protection gap has closed by 20 million hectares over the past decade, this required expansion would be feasible with a major boost in investment and focus on long-standing priorities. A realistic mix of purchases, Indigenous Protected Areas and private land covenants would require an Australian Government National Reserve System investment of ~$170 million per year over the five years to 2020, representing ~42 per cent of the $400 million per year which the Australian Government has budgeted for landcare and conservation over the next five years. State, territory and local governments, private and Indigenous partners wouldlikewise need to boost financial commitments to both expand and maintain newprotected areas to meet the agreed National Reserve System strategic objectives.The total cost of Australia achieving a comprehensive, adequate and representativemarine reserve system that would satisfy Aichi Target 11 is an estimated $247 million.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Private property accounts for much of the planet's arable land, and most of this has been cleared for agricultural production. Agricultural areas retain only fragments of their original vegetation and this has been detrimental to many native plant and animal species. Habitat restoration and revegetation may be able to reconnect and enlarge existing remnant areas in agricultural landscapes and, thereby, enhance native plant and animal communities. However, conservation initiatives will be successful only if landowners actively participate in restoration actions. This study used four hundred postal questionnaires to assess the degree to which landowners in two regions of south-eastern Australia adopt restoration activities, their opinions regarding remnant and revegetated land and their management actions in these areas. One hundred and seventy nine completed questionnaires were received. Three quarters of respondents had undertaken restoration on their property or were planning to revegetate in the future. Landcare members were most likely to have previously revegetated and future revegetation intentions were best predicted by previous restoration activities and a primary income source that was off-farm. Landowners were more likely to manage restored and remnant areas if they perceived threats such as weeds, pest animals and fire risk would be detrimental to their property, than to enhance environmental outcomes. These results indicate that landowners are interested in restoring natural areas, but without greater assistance to restore ground layers and manage perceived threats posed by fire and invasive plants and animals, restoration actions will not have their desired biodiversity benefits.