3 resultados para Laguerre

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient algorithm for solving the transient radiative transfer equation for laser pulse propagation in biological tissue is presented. A Laguerre expansion is used to represent the time dependency of the incident short pulse. The Runge–Kutta– Fehlberg method is used to solve the intensity. The discrete ordinates method is used to discretize with respect to azimuthal and zenith angles. This method offers the advantages of representing the intensity with a high accuracy using only a few Laguerre polynomials, and straightforward extension to inhomogeneous media. Also, this formulation can be easily extended for solving the 2-D and 3-D transient radiative transfer equations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcellular diffusion across the absorptive epithelial cells (enterocytes) of the small intestine is the main route of absorption for most orally administered drugs. The process by which lipophilic compounds transverse the aqueous environment of the cytoplasm, however, remains poorly defined. In the present study, we have identified a structurally diverse group of lipophilic drugs that display low micromolar binding affinities for a cytosolic lipid-binding protein—intestinal fatty acid-binding protein (I-FABP). Binding to I-FABP significantly enhanced the transport of lipophilic drug molecules across a model membrane, and the degree of transport enhancement was related to both drug lipophilicity and I-FABP binding affinity. These data suggest that intracellular lipid-binding proteins such as I-FABP may enhance the membrane transport of lipophilic xenobiotics and facilitate drug access to the enterocyte cytoplasm and cytoplasmic organelles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An efficient numerical technique for modeling biological tissues using the radiative transfer equation is presented. Time dependence of the transient radiative transfer equation is approximated using Laguerre expansion. Azimuthal angle is discretized using the discrete ordinates method and the resulting set of ordinary differential equations is solved using the Runge-Kutta-Felhberg method.