3 resultados para Krebs-Henseleit solution

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A strategy for a fast (ca. 20 min), specific, electrochemical immunoassay for the cardiac biomarker creatine kinase (CK) and the human cytokine interleukin 10 (IL10) has been developed in this paper. The polyaniline modified gold surface formed from electrochemical reduction of diazonium salt supplies a solid substrate to link the activated carboxylic acid groups from the antibodies, which were labelled with ferrocene. The direct electrochemistry of ferrocene allows the analysis of protein markers with good sensitivity. The creatine kinase sensor demonstrates limit of detection of 0.5 pg mL−1 in a physiological Krebs-Henseleit solution. The anti-IL10 antibody retained fluorescence activity after further coupling to ferrocene and covalent immobilization on to a gold electrode, showing a linear detection range for IL-10 from 0.001 ng mL−1 to 50 ng mL−1 in PBS. We attribute the high sensitivity to the well-controlled modified surface which results in end–on antibodies that can specifically capture the antigen with ease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of the current study is to evaluate the cardioprotective effects of purified Salvia miltiorrhiza extract (PSME) on myocardial ischemia/reperfusion injury in isolated rat hearts. Hearts were excised and perfused at constant flow (7 – 9 ml · min−1) via the aorta. Non-recirculating perfusion with Krebs-Henseleit (KH) solution was maintained at 37°C and continuously gassed with 95% O2 and 5% CO2. KH solution with or without PSME (100 mg per liter solution) was used after 30-min zero-flow ischemia for the PSME and control group, respectively. Left ventricular (LV) developed pressure; its derivatives, diastolic pressure, and so on were continuously recorded via a pressure transducer attached to a polyvinylchloride balloon that was placed in the left ventricle through an incision in the left atrium. PSME treated hearts showed significant postischemic contractile function recovery (developed pressure recovered to 44.2 ± 4.9% versus 17.1 ± 5.7%, P<0.05; maximum contraction recovered to 57.2 ± 5.9% versus 15.1 ± 6.3%, P<0.001; maximum relaxation restored to 69.3 ± 7.3% versus 15.4 ± 6.3%, P<0.001 in the PSME and control group, respectively). Significant elevation in end-diastolic pressure, which indicated LV stiffening in PSME hearts might have resulted from the excess high dose of PSME used. Further study will be conducted on the potential therapeutic value with lower dose of PSME on prevention of ischemic heart disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cardiac surgery often generates oxidative stress leading to ischemia reperfusion injury (I-R). Antioxidants have been shown to prevent this injury and have been added to cardioplegic solutions to assist in recovery. In this study, we tested the effectiveness of sodium selenite in protecting against ischemia reperfusion injury and investigated the mechanisms behind this protection. Hearts from male Wistar rats were subjected to ischemia reperfusion using the Langendorf model. Krebs-Henseleit perfusion solutions were supplemented with 0,0.1, 0.5, 1.0, and 10μM sodium selenite. Hearts were perfused for 30 min and then subjected to 22.5 min of global ischemia followed by 45 min reperfusion. Heart rate, ischemic contracture, end diastolic pressure, and developed ventricular pressure were monitored. At the completion of the experiment, hearts were homogenized and tissue extracts were assayed for glutathione peroxidase (GSH-Px) and thioredoxin reductase (Thx-Red) activity. Sodium selenite, at a concentration of 0.5 μM, demonstrated a protective effect on the recovery of cardiac function following I-R, as evidenced by a lower end diastolic pressure and enhanced recovery of rate pressure product. There was no beneficial effect observed in hearts perfused with 0.1 μM sodium selenite-supplemented buffer, whereas poorer functional recovery was observed in hearts perfused with 10 μM sodium selenite-supplemented buffer. The beneficial effect of sodium selenite was not mediated through increased activity of GSH-Px or Thx-Red. This study demonstrates that the addition of sodium selenite to reperfusion solutions, at an optimal concentration of 0.5 μM, assists in cardiac recovery following ischemia reperfusion.