11 resultados para KINETIC STUDIES

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

(1R,2S,5R)-Menthyldiphenylgermane and its enantiomer have been prepared in a few steps from germanium tetrachloride. The initial step in this sequence, namely the reaction between germanium tetrachloride and menthylmagnesium chloride, produces menthylgermanium trichloride, which is the exclusive product of this Grignard reaction, presumably due to the bulk of the menthyl group. When used at a low temperature (−78 °C) and in conjunction with Lewis acids, such as magnesium salts, these chiral germanes are capable of reducing ester functionalized radicals in high enantioselectivity, but in low-moderate yield. For example, (R)-naproxen ethyl ester was obtained in 15% yield and 99% ee by reaction in toluene of 2-bromonaproxen ethyl ester with (1R,2S,5R)-menthyldiphenylgermane in toluene at −78 °C in the presence of magnesium bromide. At 80 °C, (1R,2S,5R)-menthyldiphenylgermane reacted with primary alkyl radicals with a rate constant of 1.02 × 106 M−1 s−1. Kinetic studies reveal the Arrhenius expression for this reaction to be: log(k/M−1 s−1) = (11.1 ± 0.4) − (34.6 ± 3.1)/θ where θ=2.3RT kJ mol−1.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large part of the work presented in this thesis describes the development and use of a novel electrochemical detector designed to allow the electrochemical characterisation of compounds in flowing solution by means of cyclic voltammetry. The detector was microprocessor controlled, which provides digital generation of the potential waveform and collection of data for subsequent analysis. Microdisk working electrodes are employed to permit both thermodynamic and kinetically controlled processes to be studied under steady-state conditions in flowing solutions without the distortion or hysteresis normally encountered with larger sized electrodes. The effect of electrode size, potential scan rate, and solution flow rate are studied extensively with the oxidation of ferrocene used as an example of a thermodynamically controlled process and a series of catecholamines as examples of a kinetically controlled process. The performance of the detector was best demonstrated when used as a HPLC post-column detector. The 3-dimensional chromatovoltammograms obtained allow on-line characterisation of each fraction as it elutes from the column. The rest of the work presented in this thesis involves the study of the oxidative degradation pathway of dithranol. The oxidative pathway was shown to involve a complex free radical mechanism, dependent on the presence of both oxygen and, in particular light. The pathway is further complicated by the fact that dithranol may exist in either a keto or enol form, the enol being most susceptible to oxidation. A likely mechanism is proposed from studies performed with cyclic voltammetry and controlled potential electrolysis, then defined by subsequent kinetic studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Enantiomers of Tris(2,2'-bipyridyl)ruthenium(II) were selectively resolved and utilised in chiral kinetic studies. Instrumentation was designed and built for the collection of kinetic data from their chemiluminescence reactions. After testing the kinetic profiles of various enantiomerically pure analyte reagent combinations, results proved to be inconclusive and further testing is still required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results are presented from a series of laboratory model studies of the flushing of saline water from a partially- or fully-closed estuary. Experiments have been carried out to determine quantitatively the response of the trapped saline volume to fresh water flushing discharges Q for different values of the estuary bed slope α and the density difference (∆ρ)o between the saline and fresh water. The trapped saline water forms a wedge within the estuary and for maintained steady discharges, flow visualisation and density profile data confirm that its response to the imposition of the freshwater purging flow occurs in two stages, namely (i) an initial phase characterised by intense shear-induced mixing at the nose of the wedge and (ii) a relatively quiescent second phase where the mixing is significantly reduced and the wedge is forced relatively slowly down and along the bed slope. Scalings based upon simple energy balance considerations are shown to be successful in (i) describing the time-dependent wedge behaviour and (ii) quantifying the proportion of input kinetic energy converted into increasing the potential energy of the wedge/river system. Measurements show that the asymptotic value of the energy conversion factor increases with increasing value of the river Froude number Fro at small values of Fro, thereafter reaching a maximum value and a gradual decrease at the highest values of Fro. Dimensional analysis considerations indicate that the normalised, time-dependent wedge position (xw)3(g')o/q2 can be represented empirically by a power-law relationship of the form (xw)[(g')o/q2]1/3 =C [(t)[(g')o2/q]1/3]"where the proportionality coefficient C is a function of both Fro and the slope angle α and the exponent n has a value of 0.24. Successful attempts are made to relate the model data to existing field observations from a microtidal estuary.

Experiments with multiple, intermittent periodic flushing flows confirm the importance of the starting phase of each flushing event for the time dependent behaviour of the saline wedge after reaching equilibrium in the intervals between such events. For the parameter ranges investigated and for otherwise-identical external conditions, no significant differences are found in the position of the wedge between cases of sequential multiple flushing flows and steady single discharges of the same total duration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High energy consumption remains a key challenge for the widely used ring spinning system. Tackling this challenge requires a full understanding of the various factors that contribute to yarn tension and energy consumption during ring spinning. In this paper, we report our recent experimental and theoretical research on air drag, yarn tension and energy consumption in ring spinning. A specially constructed rig was used to simulate the ring spinning process; and yarn tension at the guide-eye was measured for different yarns under different conditions. The effect of yarn hairiness on the air drag acting on a rotating yarn package and on a ballooning yarn was examined. Models of the power requirements for overcoming the air drag, increasing the kinetic energy of the yarn package (bobbin and wound yarn) and overcoming the yarn wind-on tension were developed. The ratio of energy-consumption to yarn-production over a full yarn package was discussed. A program to simulate yarn winding in ring spinning was implemented, which can generate the balloon shape and predict yarn tension under a given spinning condition. The simulation results were verified with experimental results obtained from spinning cotton and wool yarns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The power of isotopic substitution for the elucidation of a reaction mechanism is illustrated with reactions named after Hofmann and Favorskii. These reactions have important roles in synthetic chemistry; therefore, a wide range of experiments involving isotopic labeling or kinetic isotope effects were employed to establish their mechanistic pathways. The concepts introduced by these investigations are drawn together with an isotopic labeling study of the oxidation of urea with hypohalites. The two mechanisms proposed for this reaction have been described as a Hofmann rearrangement and a nitrogen analogue of the Favorskii rearrangement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Irinotecan (CPT-11) and its main metabolite SN-38 are potent anticancer derivatives of camptothecin (CPT), with active lactone and inactive carboxylate forms coexisting. A simple and sensitive HPLC method using the ion-pairing reagent tetrabutylammonium hydrogen sulfate (TBAHS) was developed to simultaneously determine all four analytes in rat plasma samples. Camptothecin (CPT) was used as internal standard. The mobile phase was 0.1 M potassium dihydrogen phosphate containing 0.01 M TBAHS (pH 6.4)–acetonitrile (75:25, v/v). Separation of the compounds was carried out on a Hypersil C18 column, monitored at 540 nm (excitation wavelength at 380 nm). All four compounds gave linear response as a function of concentration over 0.01–10 μM. The limit of quantitation in rat plasma was 0.01, 0.008, 0.005 and 0.005 μM for CPT-11 lactone, CPT-11 carboxylate, SN-38 lactone and SN-38 carboxylate, respectively. The method was successfully used in the study on the effect of coadministered thalidomide on the plasma pharmacokinetics of CPT-11 and SN-38 in rats. Coadministered thalidomide (100 mg/kg body weight by intraperitoneal injection) significantly increased the AUC0–10h values of CPT-11 lactone and CPT-11 carboxylate by 32.6% and 30.3 %, respectively, (P < 0.01), but decreased the values by 19.2% and 32.4% for SN-38 lactone and carboxylate, respectively, (P < 0.05). Accordingly, the value of total body clearance (CL) of CPT-11 lactone was significantly lower in combination group compared to the control (1.329 versus 1.837 L/h/kg, P = 0.0002). Plasma t1/2β values for SN-38 lactone and carboxylate were significantly (P < 0.01) smaller in rats with coadministered thalidomide, as compared to rats receiving CPT-11 alone. Further studies are needed to explore the underlying mechanisms for the observed kinetic interaction between CPT-11 and thalidomide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a photocatalytic reduction process when products formed are not effectively desorbed, they could hinder the diffusion of intermediates on the surface of the catalyst, as well as increase the chance of collisions among the products, resulting photo-oxidation in a reserve reaction on the surface. This paper analyses a simple kinetic model incorporating the coupled effect of the adsorptive photocatalytic reduction and oxidation. The development is based on Langmuir–Hinshelwood mechanism to model the formation rates of hydrogen and methane through photocatalytic reduction of carbon dioxide with water vapour. Experimental data obtained from literatures have achieved a very good fit. Such model could aid as a tool for related areas of studies. A comparative study using the model developed, showed that product concentration in term of ppm would be an effective measurement of product yields through photocatalytic reduction of carbon dioxide with water vapour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibers growing, branching, and bundling are essential for the development of crystalline fiber networks of molecular gels. In this work, for two typical crystalline fiber networks, i.e. the network of spherulitic domains and the interconnected fibers network, related kinetic information is obtained using dynamic rheological measurements and analysis in terms of the Avrami theory. In combination with microstructure characterizations, we establish the correlation of the Avrami derived kinetic parameter not only with the nucleation nature and growth dimensionality of fibers and branches, but also with the fiber bundles induced by fiber-fiber interactions. Our study highlights the advantage of simple dynamic rheological measurements over other spectroscopic methods used in previous studies for providing more kinetic information on fiber-fiber interactions, enabling the Avrami analyses to extract distinct kinetic features not only for fibers growing and branching, but also for bundling in the creation of strong interconnected fibers networks. This work may be helpful for the implementation of precise kinetic control of crystalline fiber network formations for achieving desirable microstructures and rheological properties for advanced applications of gel materials. This journal is © the Partner Organisations 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is a perspective from the peer session on stable isotope labelling and fluxomics at the Australian & New Zealand Metabolomics Conference (ANZMET) held from 30 March to 1 April 2016 at La Trobe University, Melbourne, Australia. This report summarizes the key points raised in the peer session which focused on the advantages of using stable isotopes in modern metabolomics and the challenges in conducting flux analyses. The session highlighted the utility of stable isotope labelling in generating reference standards for metabolite identification, absolute quantification, and in the measurement of the dynamic activity of metabolic pathways. The advantages and disadvantages of different approaches of fluxomics analyses including flux balance analysis, metabolic flux analysis and kinetic flux profiling were also discussed along with the use of stable isotope labelling in in vivo dynamic metabolomics. A number of crucial technical considerations for designing experiments and analyzing data with stable isotope labelling were discussed which included replication, instrumentation, methods of labelling, tracer dilution and data analysis. This report reflects the current viewpoint on the use of stable isotope labelling in metabolomics experiments, identifying it as a great tool with the potential to improve biological interpretation of metabolomics data in a number of ways.