5 resultados para Jetties.

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the work reported in this thesis was to design and implement an ecological effects environmental monitoring program which would: 1) Collect baseline biological information on sessile epibiotic fouling communities from an area adjacent to a petroleum refinery located on Corio Bay, Victoria, to allow comparison with results of future monitoring for the assessment of long term temporal water quality trends. 2) Detect and — if possible - estimate the magnitude of any influence on epibiotic fouling communities within the Corio Bay marine ecosystem attributable to operations at the Shell Petroleum Refinery. 3) Investigate the extent of thermal stratification and rate of dispersal of the petroleum refinery main cooling-water outfall plume (discharging up to 350,000 tonnes of warmed seawater per day), and its effect on epibiotic communities within the EPA-defined mixing zone. A major component of the work undertaken was the design and development of artificial-substrate biological sampling stations suitable for use under the conditions prevailing in Corio Bay, and the development of appropriate quantitative underwater photographic sampling techniques to fulfil the experimental criteria outlined above. Experimental and other constraints imposed on the design of the stations precluded the simple suspension of frames from jetties or pylons, a technique widely used in previous work of this type. Artificial substrate panels were deployed along three radial transects centred within and extending beyond the petroleum refinery main cooling-water mixing zone. Identical substrate panels were deployed at a number of control sites located throughout Corio Bay, each chosen for differences in their degree of exposure to such factors as water movement, depth, shipping traffic and/or comparable industrial activity. The rate of colonisation (space utilisation) and the development of epibiotic fouling communities on artificial substrate panels was monitored over two twelve-month sampling periods using quantitative underwater photographic sampling techniques. Sampling was conducted at 4-8 week intervals with the rate of panel colonisation and community structure determined via coverage measurements. Various species of marine algae, polychaete tubeworms, hydroids, barnacles, simple and colonial ascidians, sponges, bivalve molluscs and encrusting bryozoans were all detected growing on panels. Communities which established on panels within the cooling-water mixing-zone and those at control sites were compared using statistical procedures including agglomerative hierarchical cluster analysis. A photographic sample archive has been established to allow comparison with similar future studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corrosion has significant adverse effects on the durability of reinforced concrete (RC) structures, especially those exposed to a marine environment and subjected to mechanical stress, such as bridges, jetties, piers and wharfs. Previous studies have been carried out to investigate the corrosion behaviour of steel rebar in various concrete structures, however, few studies have focused on the corrosion monitoring of RC structures that are subjected to both mechanical stress and environmental effects. This paper presents an exploratory study on the development of corrosion monitoring and detection techniques for RC structures under the combined effects of external loadings and corrosive media. Four RC beams were tested in 3% NaCl solutions under different levels of point loads. Corrosion processes occurring on steel bars under different loads and under alternative wetting - drying cycle conditions were monitored. Electrochemical and microscopic methods were utilised to measure corrosion potentials of steel bars; to monitor galvanic currents flowing between different steel bars in each beam; and to observe corrosion patterns, respectively. The results indicated that steel corrosion in RC beams was affected by local stress. The point load caused the increase of galvanic currents, corrosion rates and corrosion areas. Pitting corrosion was found to be the main form of corrosion on the surface of the steel bars for most of the beams, probably due to the local concentration of chloride ions. In addition, visual observation of the samples confirmed that the localities of corrosion were related to the locations of steel bars in beams. It was also demonstrated that electrochemical devices are useful for the detection of RC beam corrosion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Timber poles are commonly used for telecommunication and power distribution networks, wharves or jetties, piling or as a substructure of short span bridges. Most of the available techniques currently used for non-destructive testing (NDT) of timber structures are based on one-dimensional wave theory. If it is essential to detect small sized damage, it becomes necessary to consider guided wave (GW) propagation as the behaviour of different propagating modes cannot be represented by one-dimensional approximations. However, due to the orthotropic material properties of timber, the modelling of guided waves can be complex. No analytical solution can be found for plotting dispersion curves for orthotropic thick cylindrical waveguides even though very few literatures can be found on the theory of GW for anisotropic cylindrical waveguide. In addition, purely numerical approaches are available for solving these curves. In this paper, dispersion curves for orthotropic cylinders are computed using the scaled boundary finite element method (SBFEM) and compared with an isotropic material model to indicate the importance of considering timber as an anisotropic material. Moreover, some simplification is made on orthotropic behaviour of timber to make it transversely isotropic due to the fact that, analytical approaches for transversely isotropic cylinder are widely available in the literature. Also, the applicability of considering timber as a transversely isotropic material is discussed. As an orthotropic material, most material testing results of timber found in the literature include 9 elastic constants (three elastic moduli and six Poisson's ratios), hence it is essential to select the appropriate material properties for transversely isotropic material which includes only 5 elastic constants. Therefore, comparison between orthotropic and transversely isotropic material model is also presented in this article to reveal the effect of elastic moduli and Poisson's ratios on dispersion curves. Based on this study, some suggestions are proposed on selecting the parameters from an orthotropic model to transversely isotropic condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Round timbers are used for telecommunication and power distribution networks, jetties, piles, short span bridges etc. To assess the condition of these cylindrical shape timber structures, bulk and elementary wave theory are usually used. Even though guided wave can represents the actual wave behaviour, a great deal complexity exists to model stress wave propagation within an orthotropic media, such as timber. In this paper, timber is modelled as transversely isotropic material without compromising the accuracy to a great extent. Dispersion curves and mode shapes are used to propose an experimental set up in terms of the input frequency and bandwidth of the signal, the orientation of the sensor and the distance between the sensors in order to reduce the effect of the dispersion in the output signal. Some example based on the simulated signal is also discussed to evaluate the proposed experimental set up.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Timber is one of the most widely used structural material all over the world. Round timbers can be seen as a structural component in historical buildings, jetties, short span bridges and also as piles for foundation and poles for electrical and power distribution. To evaluate the current condition of these cylindrical type timber structures, guided wave has a great potential. However, the difficulties associated with the guided wave propagation in timber materials includes orthotropic behaviour of wood, moisture contents, temperature, grain direction, etc. In addition, the effect of fully or partially filled surrounding media, such as soil, water, etc. causes attenuation on the generated stress wave. In order to investigate the effects of these parameters on guided wave propagation, extensive numerical simulation is required to conduct parametric studies. Moreover, due to the presence of multi modes in guided wave propagation, dispersion curves are of great importance. Even though conventional finite element method (FEM) can determine dispersion curves along with wave propagation in time domain, it is highly computationally expensive. Furthermore, incorporating orthotropic behaviour and surrounding media to model a thick cylindrical wave (large diameter cylindrical structures) make conventional FEM inefficient for this purpose. In contrast, spectral finite element method (SFEM) is a semi analytical method to model the guided wave propagation which does not need fine meshes compared to the other methods, such as FEM or finite difference method (FDM). Also, even distribution of mass and stiffness of structures can be obtained with very few elements using SFEM. In this paper, the suitability of SFEM is investigated to model guided wave propagation through an orthotropic cylindrical waveguide with the presence of surrounding soil. Both the frequency domain analysis (dispersion curves) and time domain reconstruction for a multi-mode generated input signal are presented under different loading location. The dispersion curves obtained from SFEM are compared against analytical solution to verify its accuracy. Lastly, different numerical issues to solve for the dispersion curves and time domain results using SFEM are also discussed.