5 resultados para Jellinek, AdolphJellinek, AdolphAdolphJellinek

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decisions affecting the management of natural resources in agricultural landscapes are influenced by both social and ecological factors. Models that integrate these factors are likely to better predict the outcomes of natural resource management decisions compared to those that do not take these factors into account. We demonstrate how Bayesian Networks can be used to integrate ecological and social data and expert opinion to model the cost-effectiveness of revegetation activities for restoring biodiversity in agricultural landscapes. We demonstrate our approach with a case-study in grassy woodlands of south-eastern Australia. In our case-study, cost-effectiveness is defined as the improvement in native reptile and beetle species richness achieved per dollar spent on a restoration action. Socio-ecological models predict that weed control, the planting of trees and shrubs, the addition of litter and timber, and the addition of rocks are likely to be the most cost-effective actions for improving reptile and beetle species richness. The cost-effectiveness of restoration actions is lower in remnant and revegetated areas than in cleared areas because of the higher marginal benefits arising from acting in degraded habitats. This result is contingent on having favourable landowner attitudes. Under the best-case landowner demographic scenarios the greatest biodiversity benefits are seen when cleared areas are restored. We find that current restoration investment practices may not be increasing faunal species richness in agricultural landscapes in the most cost-effective way, and that new restoration actions may be necessary. Integrated socio-ecological models support transparent and cost-effective conservation investment decisions. Application of these models highlights the importance of collecting both social and ecological data when attempting to understand and manage socio-ecological systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Habitat restoration, including revegetation of linear strips and enlargement of remnant patches, may benefit native fauna in highly fragmented landscapes. Such restoration has occurred around the world, even though the relative importance of strips and patches of vegetation remains controversial. Using reptile communities from south-eastern Australia, we assessed the conservation value of revegetation in strips and alongside remnant patches compared with remnant vegetation and cleared roadsides. We also examined the distance that reptiles occurred from remnant patches into linear vegetation. We found that reptile species richness and counts did not substantially differ between revegetated, remnant and cleared habitats, or between linear strip and patch treatments. This may indicate that species sensitive to land clearing have already been lost from the landscape. These results imply that if specialist species have already been lost, we may be unable to measure the effects of agriculture on biodiversity. Furthermore, revegetation with the expectation that fauna will recolonize may be unrealistic and translocations may be necessary. Unexpectedly, we recorded higher species richness and counts of rare reptile species in remnant linear strips as distance from remnant patches increased. Ground-layer attributes were important for increasing reptile species richness and counts and in structuring reptile communities, explaining approximately three times as much variation as remnant shape or vegetation type (remnant, revegetated, cleared). Management agencies should protect and effectively manage remnant linear strips if rarer reptiles are to be retained, paying particular attention to ground-layer attributes. The decision to include ground layers in future revegetation activities will be more important than the shape of restored areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Private property accounts for much of the planet's arable land, and most of this has been cleared for agricultural production. Agricultural areas retain only fragments of their original vegetation and this has been detrimental to many native plant and animal species. Habitat restoration and revegetation may be able to reconnect and enlarge existing remnant areas in agricultural landscapes and, thereby, enhance native plant and animal communities. However, conservation initiatives will be successful only if landowners actively participate in restoration actions. This study used four hundred postal questionnaires to assess the degree to which landowners in two regions of south-eastern Australia adopt restoration activities, their opinions regarding remnant and revegetated land and their management actions in these areas. One hundred and seventy nine completed questionnaires were received. Three quarters of respondents had undertaken restoration on their property or were planning to revegetate in the future. Landcare members were most likely to have previously revegetated and future revegetation intentions were best predicted by previous restoration activities and a primary income source that was off-farm. Landowners were more likely to manage restored and remnant areas if they perceived threats such as weeds, pest animals and fire risk would be detrimental to their property, than to enhance environmental outcomes. These results indicate that landowners are interested in restoring natural areas, but without greater assistance to restore ground layers and manage perceived threats posed by fire and invasive plants and animals, restoration actions will not have their desired biodiversity benefits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Habitat restoration has become an important part of biodiversity conservation in the face of extensive habitat loss and fragmentation, especially in agricultural landscapes. Study of invertebrates such as beetles (Coleoptera) may be important to assess the effectiveness of restoration techniques in maintaining native fauna, because they provide a variety of trophic roles and ecosystem services. In this study we examined the conservation value for beetles of revegetation in linear strips and alongside remnant patches compared with remnant vegetation and cleared roadsides. We also assessed how habitat variables structured beetle community composition. Beetle species richness and abundance did not substantially differ between revegetated, remnant and cleared areas, and was not substantially influenced by vegetation type and structure. Herbivorous beetles and the family Curculionidae were more species rich in cleared linear strips. Beetle fauna in these agricultural landscapes may be a robust subset of the pre-clearing beetle community, possibly due to the widespread degradation of remnant areas and the ground layer habitats within them. One beetle species had slightly higher abundance in remnant linear strips, suggesting that remnant habitats may be important for some beetle species. Importantly, environmental variables strongly influenced beetle community composition, signifying that beetle communities are still responding to factors such as soil type and native vegetation, rather than variables mainly associated with land management. The restoration practices currently being undertaken in agricultural areas may not maintain beetle species that require specific habitat variables to survive. Ground-layer attributes need to be included in future revegetation projects, and translocation of specialist species of beetles may be required to restore communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three closely allied shallow marine taxa, Neohornibrookella sorrentae (Chapman and Crespin), Neohornibrookella glyphica (Neil), and Neohornibrookella nepeani sp. nov. are recorded from latest early Miocene to late Pliocene strata in southeastern Australia. These taxa, together with Neohornibrookella quadranodosa (Holden) from the Miocene of Midway Island (Northwestern Hawaiian Islands), form a morphologically distinct group of relatively large species (the sorrentae-group) within the genus Neohornibrookella Jellinek. Latitudinal expansion of the subtropical and warm-temperate climatic belts together with the influence of warm western boundary surface currents associated with the North and South Pacific gyres, are likely to have played key roles in the Miocene dispersal of this species group. Species of the sorrentae-group first migrated south from equatorial west Pacific regions into southeastern Australia during the early Miocene, under the influence of the East Australian Current. During three time intervals (i) latest early Miocene, (ii) latest late Miocene and (iii) earliest late Pliocene, forceful pulses of the East Australian Current played a significant role in propelling the widespread distribution of thermophilic Neohornibrookella species across southeast Australian shallow marine realms. During intervening middle and late Miocene times, Neohornibrookella species are only sporadically present across the Bass Strait region of southeast Australia, indicating a weaker East Australian Current influence and the cooling influence of coastal upwelling. During the mid early Pliocene Neohornibrookella species disappeared from the western Bass Strait region, suggesting the complete exclusion of East Australian Current waters from this region. This was probably due to the counteracting influence of the eastward flowing Zeehan Current (extension of the Leeuwin Current) impinging on the western Bass Strait region. This mid early Pliocene palaeobiogeographical partition in Bass Strait, defined by the distribution of sorrentae-group species, is here termed the Bassian Gateway. The two species, N. sorrentae and N. glyphica, occur concurrently during the mid Miocene in southeast Australia, but are associated with different lithofacies. It is hypothesised that there is a heterochronic evolutionary relationship expressed in the ornament of these two species. The thaerocytherid genera Neohornibrookella Jellinek, Tenedocythere Sissingh and Bosasella Bonaduce are here included in the new ostracod subfamily Tenedocytherinae.