3 resultados para Isozyme

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we explore the role of the C-terminus (V5 domain) of PKCvar epsilon plays in the catalytic competence of the kinase using serial truncations followed by immune-complex kinase assays. Surprisingly, removal of the last seven amino acid residues at the C-terminus of PKCvar epsilon resulted in a PKCvar epsilon-Δ731 mutant with greatly reduced intrinsic catalytic activity while truncation of eight amino acid residues at the C-terminus resulted in a catalytically inactive PKCvar epsilon mutant. Computer modeling and molecular dynamics simulations showed that the last seven and/or eight amino acid residues of PKCvar epsilon were involved in interactions with residues in the catalytic core. Further truncation analyses revealed that the hydrophobic phosphorylation motif was dispensable for the physical interaction between PKCvar epsilon and 3-phosphoinositide-dependent kinase-1 (PDK-1) as the PKCvar epsilon mutant lacking both the turn and the hydrophobic motifs could still be co-immunoprecipitated with PDK-1. These results provide fresh insights into the biochemical and structural basis underlying the isozyme-specific regulation of PKC and suggest that the very C-termini of PKCs constitute a promising new target for the development of novel isozyme-specific inhibitors of PKC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PRK1/PKN is a member of the protein kinase C (PKC) superfamily of serine/threonine protein kinases. Despite its important role as a RhoA effector, limited information is available regarding how this kinase is regulated. We show here that the last seven amino acid residues at the C-terminus is dispensable for the catalytic activity of PRK1 but is critical for the in vivo stability of this kinase. Surprisingly, the intact hydrophobic motif in PRK1 is dispensable for 3-phosphoinositide-dependent kinase-1 (PDK-1) binding and phosphorylation of the activation loop, as the PRK1-Δ940 mutant lacking the last two residues of the hydrophobic motif and the last 5 residues at the C-terminus interacts with PDK-1 in vivo and has a similar specific activity as the wild-type protein. We also found that the last four amino acid residues at the C-terminus of PRK1 is critical for the full lipid responsiveness as the PRK1-Δ942 deletion mutant is no longer activated by arachidonic acid. Our data suggest that the very C-terminus in PRK1 is critically involved in the control of the catalytic activity and activation by lipids. Since this very C-terminal segment is the least conserved among members of the PKC superfamily, it would be a promising target for isozyme-specific pharmaceutical interventions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Members of the protein kinase C (PKC) family are key signalling mediators in immune responses, and pharmacological inhibition of PKCs may be useful for treating immune-mediated diseases. Objective: To review and discuss the insights gained so far into various PKC isozymes and the therapeutic potential and challenges of developing PKC inhibitors for immune disorder therapy. Methods: A literature review of the role of PKCs in immune cell signalling and recent studies describing immune functions associated with PKC isozyme deficiency in relevant mouse disease models, followed by specific case studies of current and potential therapeutic strategies targeting PKCs. Results/conclusion: There is vast amount of data supporting PKC isozymes as attractive drug targets for certain immune disorders. Although the development of specific PKC isozyme inhibitors has been challenging, some progress has been made. It remains to be seen if broad-scale or isozyme-selective inhibition of PKC will have clinical efficacy.