9 resultados para Isopropanol

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

After an initial evaluation of several solvents, the efficiency of Soxhlet extractions with isopropanol/ammonia (s.g. 0.88) (70 : 30 v : v; 24 h) in extracting compounds associated with water repellency in sandy soils was examined using a range of repellent and wettable control soils (n = 15 and 4) from Australia, Greece, Portugal, The Netherlands, and the UK. Extraction efficiency and the role of the extracts in causing soil water repellency was examined by determining extract mass, sample organic carbon content and water repellency (after drying at 20°C and 105°C) pre- and post-extraction, and amounts of aliphatic C–H removed using DRIFT, and by assessing the ability of extracts to cause repellency in acid-washed sand (AWS).

Key findings are: (i) none of organic carbon content, amount of aliphatic C–H, or amount of material extracted give any significant correlation with repellency for this diverse range of soils; (ii) sample drying at 105°C is not necessarily useful before extraction, but may provide additional information on extraction effectiveness when used after extraction; (iii) the extraction removed repellency completely from 13 of the 15 repellent samples; (iv) extracts from all repellent and wettable control soils were capable of inducing repellency in AWS. The findings suggest that compounds responsible for repellency represent only a fraction of the extract composition and that their presence does not necessarily always cause repellency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although soils are generally considered to wet readily, some are actually water repellent at the surface and in the rhizosphere. This phenomenon occurs at low to moderate moisture contents and has been reported from soils under a range of vegetation types and from many regions around the globe. Water repellency in soils can have serious environmental implications including reduced seed germination and plant growth as well as irrigation efficiency, accelerated soil erosion, and enhanced leaching of agrochemicals through preferential flow. it has been proposed that water repellency is caused by the accumulation of hydrophobic organic compounds released as root exudates, microbial byproducts or from decomposing organic matter, which are deposited on mineral or aggregate surfaces, or are present as interstitial matter, Few studies to date have attempted to isolate and characterize these compounds and their structure is therefore only poorly understood, These studies have generally focussed on only a single soil or a small range of samples, have not included non-repellent soils as a control and have not always been able to demonstrate that the substances isolated are indeed responsible for repellency formation.

This study reports on the first part (extraction procedures) of a research programme addressing these gaps in current knowledge by investigating a wide range of severely repellent and wettable ‘control’ samples from different countries, and by including assessments of extraction efficiency and ability of extracts to cause repellency. Analytical methods include DRIFT (Diffuse Reflectance Infrared Fourier Transform Spectroscopy) of soils and IR (Infrared) analysis of extracts.

Key findings are that (i) soil sample heating after extraction is valuable in assessing the effectiveness of the extraction procedure, (ii) Soxhlet extraction using isopropanol/ ammonia (70/30 v/v) was the most effective method in extracting hydrophobic compounds, while leaving the ability of extracted compounds to induce water repellency virtually unaffected, (iii) wettable control soils also contain hydrophobic substances capable of inducing water repellency, (iv) the amount of organic compounds extracted was poorly related to sample repellency, indicating that compounds responsible for repellency may only represent a small fraction of the extract, (v) differences in extraction efficiency between different samples indicate that the compounds responsible may differ generically and/or in terms of their bonding to minerals, and (vi) the combination of repellency assessments with DRIFT on soils and JR on extracts used with internal standards has considerable potential to allow quantification of CH bearing organic matter in the soil, the efficiency of extraction processes for its removal, and its significance in causing water repellency in soils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present for the first time a real-time small-angle X-ray scattering (SAXS) study of the structural transition of fluid microemulsion to solid polymerized material in a silicone polymerizable microemulsion system. A reactive methacrylate-terminated siloxane macromonomer (MTSM, Mn ∼ 1000 g/mol) was synthesized and used for microemulsion formulations comprising MTSM (oil phase), water, and a mixture of nonionic surfactant (Teric G9A8) with isopropanol. In situ synchrotron SAXS was used to investigate time-dependent nanostructure evolution during the polymerization reaction, which was directly initiated by X-ray radiation. The SAXS data were analyzed using both the Teubner-Strey model and the core-shell model. The results obtained by the Teubner-Strey model showed that the domain size (d) decreased while the correlation length (ξ) increased upon polymerization. The analysis in terms of the core-shell model displayed that adding water to the precursor microemulsion caused the water droplets to start swelling, which resulted in the discontinuity of water in oil microemulsion. There exhibited large differences in morphologies of polymerized materials from the microemulsion formulations with different water and surfactant contents. The core and shell sizes of water droplets decreased during the course of polymerization when there was 15 wt % or more water in the microemulsion formulation; the polymerized material thus exhibited increasingly discrete granular morphology. When there was 10 wt % or less water content in the precursor microemulsion, the rearrangement of water domains could be minimized during the course of polymerization and transparent polymerized material was obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A purified alkaline thermo-tolerant bacterial lipase from Bacillus cereus MTCC 8372 was immobilized on a Poly (MAc- co -DMA- cl -MBAm) hydrogel. The hydrogel showed approximately 94% binding capacity for lipase. The immobilized lipase (2.36 IU) was used to achieve esterification of myristic acid and isopropanol in n -heptane at 65 °C under continuous shaking. The myristic acid and isopropanol when used at a concentration of 100 mM each in n -heptane resulted in formation of isopropyl myristate (66.0 ± 0.3 mM) in 15 h. The reaction temperature below or higher than 65°C markedly reduced the formation of isopropyl myristate. Addition of a molecular sieve (3 Å × 1.5 mm) to the reaction mixture drastically reduced the ester formation. The hydrogel bound lipase when repetitively used to perform esterification under optimized conditions resulted in 38.0 ± 0.2 mM isopropyl myristate after the 3 rd cycle of esterification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selective production of fragrance fatty acid ester from isopropanol and acetic acid has been achieved using silica-immobilizedlipase of Bacillus cereus MTCC 8372. A purified thermoalkalophilic extracellular lipase was immobilized by adsorption onto the silica. The effects of various parameters like molar ratio of substrates (isopropanol and acetic acid; 25 to 100 mM), concentration ofbiocatalyst (25–125 mg/mL), reaction time, reaction temperature, organic solvents,molecular sieves, and initial water activity werestudied for optimal ester synthesis. Under optimized conditions, 66.0mM of isopropyl acetate was produced when isopropanol and acetic acid were used at 100mM: 75mM in 9h at 55◦C in n-heptane under continuous shaking (160 rpm) using bound lipase(25mg). Addition of molecular sieves (3 °A ×1.5mm) resulted in a marked increase in ester synthesis (73.0mM). Ester synthesiswas enhanced by water activity associated with pre-equilibrated saturated salt solution of LiCl. The immobilized lipase retained more than 50% of its activity after the 6th cycle of reuse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we report a facile method for controlling the morphology and porosity of porous siloxane membranes through manipulation of the water content of precursor microemulsions. The polymerizable microemulsion precursors consisted of a methacrylate-terminated siloxane macromonomer (MTSM) as the oil phase, nonionic surfactant (Teric G9A8), water, and cosurfactant (isopropanol). Photo-polymerization of the oil phase in the parent microemulsion solutions resulted in polymeric solids, and subsequent removal of the extractable components yielded porous PDMS membranes. The pre-cured parent microemulsion solutions and post-cured polymers were characterized by small angle X-ray scattering (SAXS) while the nanostructures of extracted porous polymer membranes were characterized by SAXS, scanning electron microscopy (SEM) and mercury porosimetry. The results indicated that nano- and micro-structures of the membranes could be modulated by the water content of the precursor microemulsions. Further, in situ photo-rheometry was used to follow the microemulsion polymerization process. The rate of polymerization and the mechanical properties of the resulting PDMS membranes also depend on the water content of precursor microemulsions. This study demonstrates a simple approach to the fabrication of a variety of novel porous PDMS membranes with controllable morphology and porosity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the blending of three natural polymers, raw cotton, silk and wool, using ionic liquids as the dissolving media. We find that with increased content of wool and silk the thermal degradation temperature of the new bio films increases. This is due to an increase in the hydrogen bond network between the blended polymers. We also investigated the role of the coagulating solvent by coagulating the bio films using water, methanol or isopropanol. Again, we find the coagulating solvent impacts the final properties of the bio films with water shown to coagulated films with the best material properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the dissolution of semi-domestic silk type Antheraea assamensis using ionic liquids. We investigated the impact of different coagulating solvents, including isopropanol and water on the structure and the morphology of the regenerated silk. We found that the water regenerated silk film showed a high β-sheet content and a native silk-like XRD pattern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis and complete characterization of some ester functionalized vinylic tellurides bearing an aryl ligand with varying steric and electronic effects bound to tellurium is described. Hydrotelluration of methyl propiolate using Ar2Te2/NaBH4 in methanol results in a mixture of stereoisomers of methyl β-(aryltelluro)acrylates, ArTeCH[double bond, length as m-dash]CHCOOMe (Ar = 4-MeOC6H4, 1A; 1-C10H7, 2A; 2,4,6-Me3C6H2, 3A; C5H5FeC5H4, 4A; 4-Me2NC6H4, 5A; and 2-C4H3S, 6A). The same reaction in ethanol provides isomeric mixtures of the ethyl esters ArTeCH[double bond, length as m-dash]CHCOOEt (1B–6B). However, in the reactions between methyl propiolate and Ar2Te2 (Ar = 2,4,6-Me3C6H2, 4-Me2NC6H4) in isopropanol or t-butanol, no exchange of alkyl groups between the parent ester and the solvent is observed, instead detelluration of the Ar2Te2 to Ar2Te is a competing reaction along with almost exclusive formation of the (Z)-isomers (3Aa, 5Aa). The geometry of the separated stereoisomers is established in solution, with the help of 1H, 13C and 125Te NMR spectrometry. Of particular interest is the observation that 125Te chemical shifts {deshielded in (Z) compared to (E); Δδ = 106–136 ppm} and the geminal heteronuclear coupling constants {2J(1H–125Te) values for (E) are more than seven times that of the corresponding (Z) isomer} can be used to distinguish between liquid isomers. Structural characterization in the solid state by single-crystal X-ray diffraction for the 2Ba, 3Aa, 3Ba, 5Aa, 8 (Z)-isomers as well as for both stereoisomers of 4-Me2NC6H4TeCH[double bond, length as m-dash]CHCOOEt (5Ba and 5Bb) is also presented. The carbonyl O atom of the ester group is invariably involved, at least in the solid state, in a secondary bonding interaction with the Te(II) atom. While an intermolecular Te⋯O interaction gives rise to one-dimensional supramolecular arrays in the crystal lattice of 5Bb with (E) configuration, it is realized intramolecularly in the case of the (Z)-isomers due to the cis position of the chalcogen atoms.