117 resultados para Isometric knee extension torque

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To study the efficacy of aquatic resistance training on biochemical composition of tibiofemoral cartilage in postmenopausal women with mild knee osteoarthritis (OA).

DESIGN: Eighty seven volunteer postmenopausal women, aged 60-68 years, with mild knee OA (Kellgren-Lawrence grades I/II and knee pain) were recruited and randomly assigned to an intervention (n = 43) and control (n = 44) group. The intervention group participated in 48 supervised aquatic resistance training sessions over 16 weeks while the control group maintained usual level of physical activity. The biochemical composition of the medial and lateral tibiofemoral cartilage was estimated using single-slice transverse relaxation time (T2) mapping and delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC index). Secondary outcomes were cardiorespiratory fitness, isometric knee extension and flexion force and knee injury and OA outcome (KOOS) questionnaire.

RESULTS: After 4-months aquatic training, there was a significant decrease in both T2 -1.2 ms (95% confidence interval (CI): -2.3 to -0.1, P = 0.021) and dGEMRIC index -23 ms (-43 to -3, P = 0.016) in the training group compared to controls in the full thickness posterior region of interest (ROI) of the medial femoral cartilage. Cardiorespiratory fitness significantly improved in the intervention group by 9.8% (P = 0.010).

CONCLUSIONS: Our results suggest that, in postmenopausal women with mild knee OA, the integrity of the collagen-interstitial water environment (T2) of the tibiofemoral cartilage may be responsive to low shear and compressive forces during aquatic resistance training. More research is required to understand the exact nature of acute responses in dGEMRIC index to this type of loading. Further, aquatic resistance training improves cardiorespiratory fitness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tendon stiffness may be involved in limiting peak musculoskeletal forces and thus may constitute an upper limit for bone strength. The patellar tendon bone (PTB) graft, which is harvested from the patellar tendon during surgical reconstruction of the anterior cruciate ligament (ACL), is an ideal scenario to test this hypothesis. Eleven participants were recruited who had undergone surgical reconstruction of the ACL with a PTB graft 1-10 years prior to study inclusion. As previously reported, there was no side-to-side difference in thigh muscle cross-sectional area, in maximum voluntary knee extension torque, or in patellar tendon stiffness, suggesting full recovery of musculature and tendon. However, in the present study bone mineral content (BMC), assessed by peripheral quantitative computed tomography, was lower on the operated side than on the control side in four regions studied (P = 0·0019). Differences were less pronounced in the two sites directly affected by the operation (patella and tibia epiphysis) when compared to the more remote sites. Moreover, significant side-to-side differences were found in BMC in the trabecular compartment in the femoral and tibial epiphysis (P = 0·004 and P = 0·047, respectively) with reductions on the operated side, but increased in the patella (P = 0·00016). Cortical BMC, by contrast, was lower on the operated side at all sites except the tibia epiphysis (P = 0·09). These findings suggest that impaired recovery of BMC following ACL reconstruction is not because of lack of recovery of knee extensor strength or patellar tendon stiffness. The responsible mechanisms still remain to be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To investigate whether neuromuscular performance predicts lower limb bone strength in different lower limb sites in postmenopausal women with mild knee osteoarthritis (OA). Methods: Neuromuscular performance of 139 volunteer women aged 50-68 with mild knee OA was measured using maximal counter movement jump test, isometric knee flexion and extension force and figure-of-eight-running test. Femoral neck section modulus (Z, mm3) was determined by data obtained from dualenergy X-ray absorptiometry. Data obtained using peripheral quantitative computed tomography was used to asses distal tibia compressive (BSId, g2/cm4) and tibial mid-shaft bending (SSImaxmid, mm3) strength indices. Results: After adjustment for height, weight and age, counter movement jump peak power production was the strongest independent predictor for Z (β=0.44; p<0.001) and for BSId (β=0.32; p=0.003). This was also true in concentric net impulse for Z (β=0.37; p=0.001) and for BSId (β=0.40; p<0.001). Additionally, knee extension force (β=0.30; p<0.001) and figure-of-eight-running test (β= -0.32; p<0.001) were among strongest independent predictors for BSId after adjustments. For SSImaxmid, concentric net impulse (β=0.33; p=0.002) remained as the strongest independent predictor after adjustments. Conclusions: Neuromuscular performance in postmenopausal women with mild knee OA predicted lower limb bone strength in every measured skeletal site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the clinical features of patellar tendinopathy (PT), with focus on individuals with unilateral and bilateral PT. A cross-sectional study design was employed to compare individuals with unilateral (n = 14) or bilateral (n = 13) PT and those without PT (control, n = 31). Features assessed included thigh strength (normalized peak knee extensor torque) and flexibility (sit-and-reach and active knee extension), calf endurance (heel-rise test), ankle flexibility (dorsiflexion), alignment measures (arch height and leg length difference), and functional measures (hop for distance and 6 m hop test). Groups were matched for age and height; however, unilateral and bilateral PT had greater mass with a higher body mass index (BMI) than control. Also, bilateral PT performed more sport hours per week than both unilateral PT and control. Unilateral PT had less thigh strength than control and bilateral PT, whereas bilateral PT had more thigh flexibility than control and unilateral PT. Both unilateral and bilateral PT had altered alignment measures compared to control. Features that predicted symptoms in PT were lower thigh flexibility and strength, whereas those that predicted function were higher thigh strength and lower ankle flexibility.  These findings indicate that unilateral and bilateral PT represent distinct entities, and that thigh strength appears particularly important in PT as it predicted both symptoms and function in PT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this research was to determine whether joint angles at critical gait events and during major energy generation/absorption phases of the gait cycle would reliably discriminate age-related degeneration during unobstructed walking. The gaits of 24 healthy adults (12 young and 12 elderly) were analysed using the PEAK Motus motion analysis system. The elderly participants showed significantly greater single (60.3% versus 62.3%, p < 0.01) and double ( p < 0.05) support times, reduced knee flexion (47.7° versus 43.0°, p < 0.05) and ankle plantarflexion (16.8° compared to 3.3°, p = 0.053) at toe off, reduced knee flexion during push-off and reduced ankle dorsiflexion (16.8° compared to 22.0°, p < 0.05) during the swing phase. The plantarflexing ankle joint motion during the stance to swing phase transition (A2) for the young group (31.3°) was about twice ( p < 0.05) that of the elderly (16.9°). Reduced knee extension range of motion suggests that the elderly favoured a flexed-knee gait to assist in weight acceptance. Reduced dorsiflexion by the elderly in the swing phase implies greater risk of toe contact with obstacles. Overall, the results suggest that joint angle measures at critical events/phases in the gait cycle provide a useful indication of age-related degeneration in the control of lower limb trajectories during unobstructed walking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose : To establish if visual feedback and force requirements influence SICI.

Methods : SICI was assessed from 10 healthy adults (5 males and 5 females aged between 21 and 35 years) in three submaximal isometric elbow flexion torque levels [5, 20, and 40% of maximal voluntary contraction (MVC)] and with two tasks differing in terms of visual feedback. Single-pulse and paired-pulse motor-evoked potentials (MEPs), supramaximal M-wave, and background surface electromyogram (sEMG) were recorded from the biceps brachii muscle.

Results : Repeated measures MANOVA was used for statistical analyses. Background sEMG did not differ between tasks (F = 0.4, P = 0.68) nor was task × torque level interaction observed (F = 1.2, P = 0.32), whereas background sEMG increased with increasing torque levels (P = 0.001). SICI did not differ between tasks (F = 0.9, P = 0.43) and no task × torque level interaction was observed (F = 2.3, P = 0.08). However, less SICI was observed at 40% MVC compared to the 5 and 20% MVC torque levels (P = 0.01–0.001).

Conclusion :
SICI was not altered by performing the same task with differing visual feedback. However, SICI decreased with increasing submaximal torque providing further evidence that SICI is one mechanism of modulating cortical excitability and plays a role in force gradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of the nutrition-countermeasures (NUC) study in Cologne, Germany in 2010, seven healthy male subjects underwent 21 days of head-down tilt bed rest and returned 153 days later to undergo a second bout of 21-day bed rest. As part of this model, we aimed to examine the recovery of the lumbar intervertebral discs and muscle cross-sectional area (CSA) after bed rest using magnetic resonance imaging and conduct a pilot study on the effects of bed rest in lumbar muscle activation, as measured by signal intensity changes in T(2)-weighted images after a standardized isometric spinal extension loading task. The changes in intervertebral disc volume, anterior and posterior disc height, and intervertebral length seen after bed rest did not return to prebed-rest values 153 days later. While recovery of muscle CSA occurred after bed rest, increases (P ≤ 0.016) in multifidus, psoas, and quadratus lumborum muscle CSA were seen 153 days after bed rest. A trend was seen for greater activation of the erector spinae and multifidus muscles in the standardized loading task after bed rest. Greater reductions of multifidus and psoas CSA muscle and greater increases in multifidus signal intensity with loading were associated with incidence of low back pain in the first 28 days after bed rest (P ≤ 0.044). The current study contributes to our understanding of the recovery of the lumbar spine after 21-day bed rest, and the main finding was that a decrease in spinal extensor muscle CSA recovers within 5 mo after bed rest but that changes in the intervertebral discs persist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated the effects of exercise-induced elbow flexor fatigue on voluntary force output, electromyographic (EMG) activity and motoneurone excitability of the nonexercised knee extensor muscles. Eleven participants attended 3 testing sessions: (i) control, (ii) unilateral fatiguing elbow flexion and (iii) bilateral fatiguing elbow flexion (BiFlex). The nonfatigued knee extensor muscles were assessed with thoracic motor evoked potentials (TMEPs), maximal compound muscle action potential (Mmax), knee extensor maximal voluntary contractions (MVCs), and normalized EMG activity before and at 30 s, 3 min, and 5 min postexercise. BiFlex showed significantly lower (Δ = -18%, p = 0.03) vastus lateralis (VL) normalized EMG activity compared with the control session whereas knee extension MVC force did not show any statistical difference between the 3 conditions (p = 0.12). The TMEP·Mmax-1 ratio measured at the VL showed a significantly higher value (Δ = +46%, p = 0.003) following BiFlex compared with the control condition at 30 s postexercise. The results suggest that the lower VL normalized EMG following BiFlex might have been due to a reduction in supraspinal motor output because spinal motoneuronal responses demonstrated substantially higher value (30 s postexercise) and peripheral excitability (compound muscle action potential) showed no change following BiFelex than control condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives
To elicit descriptive data about limited joint range of motion (ROM) in subjects with type II or III spinal muscular atrophy (SMA) and to examine the relation between the number of motions with limited range and both age and functional ability.
Design
Descriptive cross-sectional study.
Setting
Neurologic pediatric outpatient clinic at a hospital in Taiwan.
Participants
Twenty-seven subjects with SMA type II (mean age, 9.8±6.5y) and 17 with SMA type III (mean age, 12.2±8.7y).
Intervention
Measurement with transparent goniometers of joint ROM bilaterally of the shoulder, elbow, wrist, hip, knee, and ankle.
Main outcome measures
The proportion of participants with each ROM limitation compared with all participants with the same SMA type, age distribution of the participants with each ROM limitation, mean range loss of each motion limitation, and the contracture index (risk index of joint contracture).
Results
Eighty-nine percent of the participants with SMA type II experienced knee extension limitation. Approximately 50% of the participants with both types of SMA had ankle dorsiflexion limitation. The motions of knee and hip extension and ankle dorsiflexion also had a relatively high contracture index. The number of motions with limited range positively correlated (P<.001) with age and upper-extremity functional grade (the higher the functional grade, the poorer the functional ability) for SMA type II.
Conclusions
We found varying degrees of joint ROM limitation. Certain motions were noted to be high risks for the development of contractures. This risk was higher mostly in younger children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eccentrically biased exercise results in skeletal muscle damage and stimulates adaptations in muscle, whereby indexes of damage are attenuated when the exercise is repeated. We hypothesized that changes in ultrastructural damage, inflammatory cell infiltration, and markers of proteolysis in skeletal muscle would come about as a result of repeated eccentric exercise and that gender may affect this adaptive response. Untrained male (n = 8) and female (n = 8) subjects performed two bouts (bout 1 and bout 2), separated by 5.5 wk, of 36 repetitions of unilateral, eccentric leg press and 100 repetitions of unilateral, eccentric knee extension exercises (at 120% of their concentric single repetition maximum), the subjects' contralateral nonexercised leg served as a control (rest). Biopsies were taken from the vastus lateralis from each leg 24 h postexercise. After bout 2, the postexercise force deficit and the rise in serum creatine kinase (CK) activity were attenuated. Women had lower serum CK activity compared with men at all times (P < 0.05), but there were no gender differences in the relative magnitude of the force deficit. Muscle Z-disk streaming, quantified by using light microscopy, was elevated vs. rest only after bout 1 (P < 0.05), with no gender difference. Muscle neutrophil counts were significantly greater in women 24 h after bout 2 vs. rest and bout 1 (P < 0.05) but were unchanged in men. Muscle macrophages were elevated in men and women after bout 1 andbout 2 (P < 0.05). Muscle protein content of the regulatory calpain subunit remained unchanged whereas ubiquitin-conjugated protein content was increased after both bouts (P < 0.05), with a greater increase after bout 2. We conclude that adaptations to eccentric exercise are associated with attenuated serum CK activity and, potentially, an increase in the activity of the ubiquitin proteosome proteolytic pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Community locomotion is threatened when older individuals are required to negotiate obstacles, which place considerable stress on the musculoskeletal system. The vulnerability of older adults during challenging locomotor tasks is further compromised by age-related strength decline and muscle atrophy. The first study in this investigation determined the relationship between the major muscle groups of the lower body and challenging locomotor tasks commonly found in the community environment of older adults. Twenty-nine females and sixteen males aged between 62 and 88 years old (68.2 ±6.5) were tested for the maximal voluntary contraction (MVC) strength of the knee extensors and 1-RM for the hip extensors, flexors, adductors, abductors, knee extensors and flexors and ankle plantar flexors. Temporal measurements of an obstacle course comprising four gait tasks set at three challenging levels were taken. The relationship between strength and the obstacle course dependent measures was explored using linear regression models. Significant associations (p≤0.05) between all the strength measures and the gait performances were found. The correlation values between strength and obstructed gait (r = 0.356-0.554) and the percentage of the variance explained by strength (R2 = 13%-31%), increased as a function of the challenging levels, especially for the stepping over and on and off conditions. While the difficulty of community older adults to negotiate obstacles cannot be attributed to a single causal pathway, the findings of the first study showed that strength is a critical requirement. That the magnitude of the association increased as a function of the challenging levels, suggests that interventions aimed at improving strength would potentially be effective in helping community older adults to negotiate environmental gait challenges. In view of the findings of the first study, a second investigation determined the effectiveness of a progressive resistance-training program on obstructed gait tasks measured under specific laboratory conditions and on an obstacle course mimicking a number of environmental challenges. The time courses of strength gains and neuromuscular mechanisms underpinning the exercise-induced strength improvements in community-dwelling older adults were also investigated. The obstructed gait conditions included stepping over an obstacle, on and off a raised surface, across an obstacle and foot targeting. Forty-three community-living adults with a mean age of 68 years (control =14 and experimental=29) completed a 24-week progressive resistance training program designed to improve strength and induce hypertrophy in the major muscles of the lower body. Specific laboratory gait kinetics and kinematics and temporal measures taken on the obstacle course were measured. Lean tissue mass and muscle activation of the lower body muscle groups were assessed. The MVC strength of the knee extensors and 1-RM of the hip extension, hip flexion, knee extension, knee flexion and ankle plantar flexion were measured. A 25% increase on the MVC of the knee extensors (p≤0.05) was reported in the training group. Gains ranging between 197% and 285% were recorded for the 1-RM exercises in the trained subjects with significant improvements found throughout the study (p≤0.05). The exercise-induced strength gains were mediated by hypertrophic and neural factors as shown by 8.7% and 27.7% increases (p≤0.05) in lean tissue mass and integrated electromyographic activity, respectively. Strength gains were accompanied by increases in crossing velocity, stride length and reductions in stride duration, stance and swing time for all gait tasks except for the foot targeting condition. Specific kinematic variables associated with safe obstacle traverse such as vertical obstacle heel clearance, limb flexion, horizontal foot placements prior to and at post obstacle crossing and landing velocities resulted in an improved crossing strategy in the experimental subjects. Significant increases in the vertical and anterior-posterior ground reaction forces accompanied the changes in the gait variables. While further long-term prospective studies of falls rates would be needed to confirm the benefits of lower limb enhanced strength, the findings of the present study provide conclusive evidence of significant improvements to gait efficiency associated with a systematic resistance-training program. It appears, however, that enhanced lower body strength has limited effects on gait tasks involving a dynamic balance component. In addition, due to the larger strength-induced increases in voluntary activation of the leg muscle compared to relatively smaller gains in lean tissue mass, neural adaptations appear to play a greater contributing role in explaining strength gains during the current resistance training protocol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The objective of this study was to assess the reliability of testing skeletal muscle strength and peak aerobic power in a clinical population of patients with chronic heart failure (CHF).

METHODS: Thirty-three patients with CHF (New York Heart Association (NYHA) Functional Class 2.3 ± 0.5; left ventricular ejection fraction 27% ± 7%; age 65 ± 9 years; 28:5 male-female ratio) underwent two identical series of tests (T1 and T2), 1 week apart, for strength and endurance of the muscle groups responsible for knee extension/flexion and elbow extension/flexion. The patients also underwent two graded exercise tests on a bicycle ergometer to measure peak oxygen consumption (VO2peak). Three months later, 18 of the patients underwent a third test (T3) for each of the measures. Means were compared using MANOVA with repeated measures for strength and endurance, and ANOVA with repeated measures for VO2peak.

RESULTS: Combining data for all four movement patterns, the expression of strength increased from T1 to T2 by 12% ± 25% (P < .001; intraclass correlation coefficient [ICC] = 0.89). Correspondingly, endurance increased by 13% ± 23% (P = .004; ICC = 0.87). Peak oxygen consumption was not significantly different (16.2 ± 0.8 and 16.1 ± 0.8 mL·kg-1·min-1 for T1 and T2, respectively;P = .686; ICC = 0.91). There were no significant differences between T2 and T3 for strength (2% ± 17%;P = .736; ICC = 0.92) or muscle endurance (-1% ± 15%;P = .812; ICC = 0.96), but VO2peak decreased from 16.7 ± 1.2 to 14.9 ± 0.9 mL·kg-1·min-1 (-10% ± 18%;P = .021; ICC = 0.89).

CONCLUSIONS: These data suggest that in a population of patients with CHF, a familiarization trial for skeletal muscle strength testing is necessary. Although familiarization is not required for assessing oxygen consumption as a single measurement, VO2peak declined markedly in the 3-month period for which these patients were followed. Internal consistency within patients was high for the second and third strength trials and the first and second tests of VO2peak.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of resistance exercise with the ingestion of supplementary protein on the activation of the mTOR cascade, in human skeletal muscle has not been fully elucidated. In this study, the impact of a single bout of resistance exercise, immediately followed by a single dose of whey protein isolate (WPI) or placebo supplement, on the activation of mTOR signalling was analyzed. Young untrained men completed a maximal single-legged knee extension exercise bout and were randomized to ingest either WPI supplement (n = 7) or the placebo (n = 7). Muscle biopsies were taken from the vastus lateralis before, and 2, 4 and 24 hr post-exercise. WPI or placebo ingestion consumed immediately post-exercise had no impact on the phosphorylation of Akt (Ser473). However, WPI significantly enhanced phosphorylation of mTOR (Ser2448), 4E-BP1 (Thr37/46) and p70S6K (Thr389) at 2 hr post-exercise. This study demonstrates that a single dose of WPI, when consumed in modest quantities, taken immediately after resistance exercise elicits an acute and transient activation of translation initiation within the exercised skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction and Methods: This study compared changes in myokine and myogenic genes following resistance exercise (3 sets of 12 repetitions of maximal unilateral knee extension) in 20 elderly men (67.8 ± 1.0 years) and 15 elderly women (67.2 ± 1.5 years). Results: Monocyte chemotactic protein (MCP)-1, macrophage inhibitory protein (MIP)-1β, interleukin (IL)-6 and MyoD mRNA increased significantly (P < 0.05), whereas myogenin and myostatin mRNA decreased significantly after exercise in both groups. Macrophage-1 (Mac-1) and MCP-3 mRNA did not change significantly after exercise in either group. MIP-1β, Mac-1 and myostatin mRNA were significantly higher before and after exercise in men compared with women. In contrast, MCP-3 and myogenin mRNA were significantly higher before and after exercise in the women compared with the men. Conclusions: In elderly individuals, gender influences the mRNA expression of certain myokines and growth factors, both at rest and after resistance exercise. These differences may influence muscle regeneration following muscle injury.