5 resultados para Inverse solution

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many difficulties exist in directly following the static recrystallization of metals, particularly during hotworking. Indirect measurement of static recrystallization has been extensively performed in the literature where, for example, the recrystallization behavior of austenite in steels has commonly been measured indirectly using the fractional softening method. This method relies on the yield stress changes during recrystallization which are physically simulated by hot torsion or compression tests. However, the inherent heterogeneity of deformation during a mechanical test leads to a non-uniform static recrystallization distribution in the test sample. This, in turn, poses a serious question concerning the reliability of the measurement since the stress calculation techniques during recrystallization are not adequately developed in the existing literature. This paper develops a computer-based method to account for heterogeneous deformation during fractional softening measurements based on the hot torsion test data. The importance of the fractional softening gradient in determining the kinetics is emphasized and deficiencies in our understanding of the basic mechanisms are highlighted. A computer-based method is introduced to generate the experimental and computational components in a cost function. The cost function is then utilized by an inverse solution to calibrate the design parameters in a static recrystallization model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heterogeneous deformation developed during "static recrystallization (SRX) tests" poses serious questions about the validity of the conventional methods to measure softening fraction. The challenges to measure SRX and verify a proposed kinetic model of SRX are discussed and a least square technique is utilized to quantify the error in a proposed SRX kinetic model. This technique relies on an existing computational-experimental multi-layer formulation to account for the heterogeneity during the post interruption hot torsion deformation. The kinetics of static recrystallization for a type 304 austenitic stainless steel deformed at 900 °C and strain rate of 0.01s-1 is characterized implementing the formulation. Minimizing the error between the measured and calculated torque-twist data, the parameters of the kinetic model and the flow behavior during the second hit are evaluated and compared with those obtained based on a conventional technique. Typical static recrystallization distributions in the test sample will be presented. It has been found that the major differences between the conventional and the presented technique results are due to the heterogeneous recrystallization in the cylindrical core of the specimen where the material is still partially recrystallized at the onset of the second hit deformation. For the investigated experimental conditions, the core is confined in the first two-thirds of the gauge radius, when the holding time is shorter than 50 s and the maximum pre-strain is about 0.5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, we propose a low cost synthetic sol-gel route that allows to produce high quality oxide nanostructures with inverse opal architecture which, transferred on alumina substrates provided with Pt interdigitated contacts and heater, are tested as gas sensing devices. An opal template of sintered monodisperse polystyrene spheres was filled with alcoholic solutions of metal oxide precursors and transferred on the alumina substrate. The polystyrene template was removed by thermal treatment, leading to the simultaneous sintering of the oxide nanoparticles. Beside SnO2, a binary oxide well known for gas sensing application, a Zn containing ternary solid solution (SnO2:Zn, with Zn 10% molar content) was taken into account for sensor preparation. The obtained high quality macro and meso-porous structures, characterized by different techniques, were tested for pollutant (CO, NO2) and interfering (methanol) gases, showing that very good detection can be reached through the increase of surface area offered by the inverse opal structure and the tailoring of the chemical composition. The electrical characterization performed on the tin dioxide based sensors shows an enhancement of the relative response towards NO2 at low temperatures in comparison with conventional SnO2 sensors obtained with sputtering technique. The addition of Zn increases the separation between the operating temperatures for reducing and oxidizing gases and results in a further enhancement of the selectivity to NO2 detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a solution to the inverse kinematics of 6-RRCRR parallel manipulators with orthogonal non-intersecting RR-joint configuration. The inverse kinematics solution of such parallel robots compared with that of parallel robots with orthogonal intersecting RR-joint or universal joint configuration is more complex due to the existence of RR-joint variables. A novel methodology is established to define 6 independent variables of the actuators and 12 dependent RR-joint variables using the pose of the mobile platform with respect to the base frame. The constraint of RR-joints are analysed and the numerical algorithm to obtain joint variables is assessed. The forward kinematics of a 6- RRCRR parallel manipulator is modelled and computational analysis is performed in order to numerically verify the accuracy and effectiveness of the proposed methodology for the inverse kinematics analysis. Numerical results of a trajectory tracking simulation are provided. The results verify high accuracy for the proposed inverse kinematics solution of this special family of parallel micromanipulators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 Determining an analytical solution to the inverse kinematics problem for a parallel manipulator is typically a straightforward problem. However, lower mobility parallel manipulators with 2-5 degrees of freedom (DOFs) often suffer from an unwanted parasitic motion in one or more DOFs. For such manipulators, the inverse kinematics problem can be significantly more difficult. This paper contains an analysis of the inverse kinematics problem for a class of 3-DOF parallel manipulators with axis-symmetric arm systems. All manipulators in the studied class exhibit parasitic motion in one DOF. For manipulators in the studied class, the general solution to the inverse kinematics problem is reduced to solving a univariate equation, while analytical solutions are presented for several important special cases.