3 resultados para Internal Solitary Waves

em Deakin Research Online - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The results from experiments conducted in a 2m high flow compartment at large Reynolds numbers are reported in this paper. Flow entered the compartment through an opening at the base on one side of the compartment and exited from an opening at the bottom of the opposite wall of the compartment. A shear layer is formed at the boundary between the incoming flow and the ambient fluid in the compartment. The impingement of the shear layer on the opposite wall of the compartment gives rise to periodic vortex formation and highly organized oscillations in the shear layer. When a density interface is present inside the compartment, resonance conditions were set up when the oscillations of the internal standing waves were “locked in” with the shear layer oscillations. Under resonance conditions, internal standing waves with amplitudes of up to 0.1m were observed. The formation of the internal standing waves is linked to the shear layer oscillations. Resonance conditions result when the shear layer is oscillating close to the natural frequency of the stratified fluid system in the compartment. The results of this investigation are applicable for fresh water storage in floating bottom-opened tanks in the sea, where under resonance conditions, entrainment rates could be significantly increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to the Intergovernmental Panel on Climate Change the buildings sector has the largest mitigation potential for CO2 emissions. Especially in office buildings, where internal heat loads and a relatively high occupant density occur at the same time with solar heat gains, overheating has become a common problem. In Europe the adaptive thermal comfort model according to EN 15251 provides a method to evaluate thermal comfort in naturally ventilated buildings. However, especially in the context of the climate change and the occurrence of heat waves within the last decade, the question arises, how thermal comfort can be maintained without additional cooling, especially in warm climates. In this paper a parametric study for a typical cellular naturally ventilated office room has been conducted, using the building simulation software EnergyPlus. It is based on the Mediterranean climate of Athens, Greece. Adaptive thermal comfort is evaluated according to EN 15251. Variations refer to different building design priorities, and they consider the variability of occupant behaviour and internal heat loads by using an ideal and worst case scenario. The influence of heat waves is considered by comparing measured temperatures for an average and an exceptionally hot year within the last decade. Since the use of building controls for shading affects thermal as well as visual comfort, daylighting and view are evaluated as well. Conclusions are drawn regarding the influence and interaction of building design, occupants and heat waves on comfort and greenhouse gas emissions in naturally ventilated offices, and related optimisation potential.