30 resultados para Insulin-Secreting Cells

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amyloid deposition and reduced β-cell mass are pathological hallmarks of the pancreatic islet in type 2 diabetes; however, whether the extent of amyloid deposition is associated with decreased β-cell mass is debated. We investigated the possible relationship and, for the first time, determined whether increased islet amyloid and/or decreased β-cell area quantified on histological sections is correlated with increased β-cell apoptosis. Formalin-fixed, paraffin-embedded human pancreas sections from subjects with (n = 29) and without (n = 39) diabetes were obtained at autopsy (64 ± 2 and 70 ± 4 islets/subject, respectively). Amyloid and β cells were visualized by thioflavin S and insulin immunolabeling. Apoptotic β cells were detected by colabeling for insulin and by TUNEL. Diabetes was associated with increased amyloid deposition, decreased -cell area, and increased β-cell βapoptosis, as expected. There was a strong inverse correlation between β-cell area and amyloid deposition (r=0.42, P < 0.001). β-Cell area was selectively reduced in individual amyloid-containing islets from diabetic subjects, compared with control subjects, but amyloid-free islets had β-cell area equivalent to islets from control subjects. Increased amyloid deposition was associated with β-cell apoptosis (r= 0.56, P < 0.01). Thus, islet amyloid is associated with decreased β-cell area and increased β-cell apoptosis, suggesting that islet myloid deposition contributes to the decreased β-cell mass that characterizes type 2 diabetes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pheromones are chemicals used to communicate between animals of the same species, and are thought to be used by most marine animals. With limited vision, abalone primarily sense their world chemically, and pheromones may play an important role in settlement, attraction, recognition, alarm, and reproduction. Despite this, there has been no detailed investigation into pheromone substances, both in their precise biochemical nature or pheromonal function. In this study, we investigated the presence of pheromonelike substances from the hypobranchial gland of the abalone Haliotis asinina using bioassays, immunohistochemistry, Western blotting, and reverse-phase high-performance liquid chromatography (RP-HPLC). The hypobranchial gland of many prosobranchial marine molluscs has been classified as a sex auxiliary gland releasing unknown substances during spawning. In our study, cephalic tentacle assays demonstrated that the cell extracts of the hypobranchial gland contain chemical cues that are sensed by conspecifics. An antibody against the sea slug “attractin” pheromone was used as a probe to localize a similar protein in the mucin-secreting cells of the epithelial lining the hypobranchial gland of both male and female abalone. The approximate molecular weight of this abalone attractin-like protein is 30 kDa in both males and females. Fractionation of hypobranchial gland extracts by C5 RP-HPLC could not selectively purify this protein, and no sex-specific differences were observed. We predict that the attractin-like protein could be one of a number of important proteins involved in maturation, aggregation, and/or spawning behavior of abalone. In future research, additional hypobranchial gland components will be tested further for these types of behavior.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The angiotensin AT4 receptor was originally defined as the specific, high affinity binding site for the hexapeptide angiotensin IV (Ang IV). Subsequently, the peptide LVV-hemorphin 7 was also demonstrated to be a bioactive ligand of the AT4 receptor. Central administration of Ang IV or LVV-hemorphin 7 (LVV-H7) markedly enhances learning and memory in normal rodents and reverse memory deficits observed in animal models of amnesia. The high affinity binding site has a broad distribution in the brain including areas such as the hippocmapus that are involved in memory processing. The high affinity Ang IV binding site (AT4 receptor) has been identified as the transmembrane enzyme, insulin-regulated membrane aminopeptidase (IRAP). Insulin-regulated aminopeptidase is a type II integral membrane spanning protein belonging to the M1 family of aminopeptidases and in insulin-responsive cells colocalizes with GLUT4 in specific intra-cellular vesicles. Both Ang IV and LVV-H7 are competitive inhibitors of IRAP catalytic activity and are not substrates of the enzyme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The angiotensin AT4 receptor was originally defined as the specific, high-affinity binding site for the hexapeptide angiotensin IV (Ang IV). Subsequently, the peptide LVV-hemorphin 7 was also demonstrated to be a bioactive ligand of the AT4 receptor. Central administration of Ang IV, its analogues or LVV-hemorphin 7 markedly enhance learning and memory in normal rodents and reverse memory deficits observed in animal models of amnesia. The AT4 receptor has a broad distribution and is found in a range of tissues, including the adrenal gland, kidney, lung and heart. In the kidney Ang IV increases renal cortical blood flow and decreases Na+ transport in isolated renal proximal tubules. The AT4 receptor has recently been identified as the transmembrane enzyme, insulin-regulated membrane aminopeptidase (IRAP). IRAP is a type II integral membrane spanning protein belonging to the M1 family of aminopeptidases and is predominantly found in GLUT4 vesicles in insulin-responsive cells. Three hypotheses for the memory-potentiating effects of the AT4 receptor/IRAP ligands, Ang IV and LVV-hemorphin 7, are proposed: (i) acting as potent inhibitors of IRAP, they may prolong the action of endogenous promnestic peptides; (ii) they may modulate glucose uptake by modulating trafficking of GLUT4; (iii) IRAP may act as a receptor, transducing the signal initiated by ligand binding to its C-terminal domain to the intracellular domain that interacts with several cytoplasmic proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neuroendocrine neoplasms (NENs) comprise a heterogeneous group of neoplasms derived from peptide- and amine-secreting cells of the neuroendocrine system. NENs commonly arise in the GI tract but can arise in most organs of the body. NENs in different organs share many common pathologic features. Although the incidence of NENs is not high, the prevalence is not low because many patients may live relatively long periods without major symptoms from the disease. While many of these tumors lead an indolent clinical course, they constitute a therapeutic challenge when they progress, metastasize and become symptomatic. Treatment requires a multidisciplinary approach including cytotoxic chemotherapy. Almost all clinical trials investigating cytotoxic chemotherapy in NENs are small single-arm studies and guidelines are derived from expert opinion and from extrapolating results from small cell lung cancer studies. This article briefly reviews NENs before focusing on reviewing data on the role of cytotoxic chemotherapy studies in NENs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Increased hepatic glucose output and decreased glucose utilization are implicated in the development of type 2 diabetes. We previously reported that the expression of a novel gene, Tanis, was upregulated in the liver during fasting in the obese/diabetic animal model Psammomys obesus. Here, we have further studied the protein and its function. Cell fractionation indicated that Tanis was localized in the plasma membrane and microsomes but not in the nucleus, mitochondria, or soluble protein fraction. Consistent with previous gene expression data, hepatic Tanis protein levels increased more significantly in diabetic P. obesus than in nondiabetic controls after fasting. We used a recombinant adenovirus to increase Tanis expression in hepatoma H4IIE cells and investigated its role in metabolism. Tanis overexpression reduced glucose uptake, basal and insulin-stimulated glycogen synthesis, and glycogen content and attenuated the suppression of PEPCK gene expression by insulin, but it did not affect insulin-stimulated insulin receptor phosphorylation or triglyceride synthesis. These results suggest that Tanis may be involved in the regulation of glucose metabolism, and increased expression of Tanis could contribute to insulin resistance in the liver.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have examined the requirement for Ca2+ in the signaling and trafficking pathways involved in insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Chelation of intracellular Ca2+, using 1,2-bis (o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra (acetoxy- methyl) ester (BAPTA-AM), resulted in >95% inhibition of insulin-stimulated glucose uptake. The calmodulin antagonist, W13, inhibited insulin-stimulated glucose uptake by 60%. Both BAPTA-AM and W13 inhibited Akt phosphorylation by 70-75%. However, analysis of insulin-dose response curves indicated that this inhibition was not sufficient to explain the effects of BAPTA-AM and W13 on glucose uptake. BAPTA-AM inhibited insulin-stimulated translocation of GLUT4 by 50%, as determined by plasma membrane lawn assay and subcellular fractionation. In contrast, the insulin-stimulated appearance of HA-tagged GLUT4 at the cell surface, as measured by surface binding, was blocked by BAPTA-AM. While the ionophores A23187 or ionomycin prevented the inhibition of Akt phosphorylation and GLUT4 translocation by BAPTA-AM, they did not overcome the inhibition of glucose transport. Moreover, glucose uptake of cells pretreated with insulin followed by rapid cooling to 4 °C, to promote cell surface expression of GLUT4 and prevent subsequent endocytosis, was inhibited specifically by BAPTA-AM. This indicates that inhibition of glucose uptake by BAPTA-AM is independent of both trafficking and signal transduction. These data indicate that Ca2+ is involved in at least two different steps of the insulin-dependent recruitment of GLUT4 to the plasma membrane. One involves the translocation step. The second involves the fusion of GLUT4 vesicles with the plasma membrane. These data are consistent with the hypothesis that Ca2+/calmodulin plays a fundamental role in eukaryotic vesicle docking and fusion. Finally, BAPTA-AM may inhibit the activity of the facilitative transporters by binding directly to the transporter itself.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The insulin-like growth factor (IGF) system is a key regulator of cell growth, survival and differentiation, and these functions are co-modulated by other growth factors including fibroblast growth factor-2 (FGF-2). To investigate IGF/FGF interactions in neuronal cells, we employed neuroblastoma cells (SK-N-MC). In serum free conditions proliferation of the SK-N-MC cells was promoted by IGF-I (25 ng/ml), but blunted by FGF-2 (50 ng/ml). IGF-I-induced proliferation was abolished in the presence of FGF-2 even when IGF-I was used at 100 ng/ml. In addition to our previously described FGF-2 induced proteolytic cleavage of IGFBP-2, we found that FGF-2 increased IGFBP-6 levels in conditioned medium (CM) without affecting IGFBP-6 mRNA abundance. Modulation of IGFBP-2 and -6 levels were not significant mechanisms involved in the blockade of IGF-I action since the potent IGF-I analogues [QAYL]IGF-I and des(1-3)IGF-I (minimal IGFBP affinity) were unable to overcome FGF-2 inhibition of cell proliferation. FGF-2 treated cells showed morphological differentiation expressing the TUJ1 neuronal marker while cells treated with IGF-I alone showed no morphological change. When IGF-I was combined with FGF-2, however, cell morphology was indistinguishable from that seen with FGF-2 alone. FGF-2 inhibited proliferation and enhanced differentiation was also associated with a 70% increase in cell death. Although IGF-I alone was potently anti-apoptotic (60% decreased), IGF-I was unable to prevent apoptosis when administrated in combination with FGF-2. Gene-array analysis confirmed FGF-2 activation of the intrinsic and extrinsic apoptotic pathways and blockade of IGF anti-apoptotic signaling. FGF-2, directly and indirectly, overcomes the proliferative and anti-apoptotic activity of IGF-I by complex mechanisms, including enhancement of differentiation and apoptotic pathways, and inhibition of IGF-I induced anti-apoptotic signalling. Modulation of IGF binding protein abundance by FGF-2 does not play a significant role in inhibition of IGF-I induced mitogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fructose-1,6-bisphosphatase (FBPase) is a gluconeogenic enzyme that is upregulated in islets or pancreatic beta-cell lines exposed to high fat. However, whether specific beta-cell upregulation of FBPase can impair insulin secretory function is not known. The objective of this study therefore is to determine whether a specific increase in islet beta-cell FBPase can result in reduced glucose-mediated insulin secretion.

To test this hypothesis, we have generated three transgenic mouse lines overexpressing the human FBPase (huFBPase) gene specifically in pancreatic islet beta-cells. In addition, to investigate the biochemical mechanism by which elevated FBPase affects insulin secretion, we made two pancreatic beta-cell lines (MIN6) stably overexpressing huFBPase.

FBPase transgenic mice showed reduced insulin secretion in response to an intravenous glucose bolus. Compared with the untransfected parental MIN6, FBPase-overexpressing cells showed a decreased cell proliferation rate and significantly depressed glucose-induced insulin secretion. These defects were associated with a decrease in the rate of glucose utilization, resulting in reduced cellular ATP levels.

Taken together, these results suggest that upregulation of FBPase in pancreatic islet beta-cells, as occurs in states of lipid oversupply and type 2 diabetes, contributes to insulin secretory dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper is an essential trace element necessary for normal growth and development. During pregnancy, copper is transported from the maternal circulation to the fetus by mechanisms which have not been clearly elucidated. The copper uptake protein, hCTR1 is predicted to play a role in copper transport in human placental cells. This study has examined the expression and localisation of hCTR1 in human placental tissue and Jeg-3 cells. In term placental tissue the hCTR1 protein was detected as a 105 kDa protein, consistent with the size of a trimer which may represent the functional protein. A 95 kDa band, possibly representing the glycosylated protein, was also detected. hCTR1 was localised within the syncytiotrophoblast layer and the fetal vascular endothelial cells in the placental villi and interestingly was found to be localised toward the basal plasma membrane. It did not co-localise with either the Menkes or the Wilson copper transporting ATPases. Using the placental cell line Jeg-3, it was shown that the 35 kDa monomer was absent in the extracts of cells exposed to insulin, estrogen or progesterone and in cells treated with estrogen an additional 65 kDa band was detected which may correspond to a dimeric form of the protein. The 95 kDa band was not detected in the cultured cells. These results provide novel insights indicating that hormones have a role in the formation of the active hCTR1 protein. Furthermore, insulin altered the intracellular localisation of hCTR1, suggesting a previously undescribed role of this hormone in regulating copper uptake through the endocytic pathway.