24 resultados para Infrared thermography

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Industrial application of infrared thermography is virtually boundless as it can be used in any situations where there are temperature differences. This technology has particularly been widely used in automotive industry for process evaluation and system design. In this work, thermal image processing technique will be introduced to quantitatively calculate the heat stored in a warm/hot object and consequently, a thermal control system will be proposed to accurately and actively manage the thermal distribution within the object in accordance with the heat calculated from the thermal images.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High pressure die casting (HPDC) is a versatile process for producing engineered metal parts by forcing molten metal under high pressure into reusable steel dies. However there are a large number of attributes involved which contribute to the complexity of the process. A novel integrated approach is developed to optimize the high pressure die casting processes. The die temperature profiles will be studied with infrared thermograph technology and the internal cooling system will be optimized to provide even cooling to the components and the die. The heat stored in the die and the components is studied with image processing. Based on the geometrical profile of the components, cooling channels can be redesigned to improve the cooling efficiency while the cooling time is reduced. This will not only significantly improve the quality of the castings but also improve the productivity of the process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiwalled carbon nanotubes (MWCNTs) were dispersed in an aqueous solution of epichlohydrin based resin with the aid of a surfactant. The MWCNT-resin solutions were applied onto cotton fabrics to form a thin coating with different MWCNT contents (0, 11.1, 20.0, 33.3, and 50%). The thermal conductivity of the fabrics was measured based on the Newton’s law of cooling. The coating containing 50% MWCNTs showed 151% increase in the thermal conductivity. Infrared thermography was used to characterize the heating/cooling behavior of the fabrics. On contact with a 50°C hot surface, coated fabric that had 50% MWCNTs in the coating layer showed a 3.9°C lower equilibrium surface temperature than the untreated fabric. The cooling rate increased with increasing the MWCNT content within the coating layer. Such an effective cooling performance was attributed to the increased thermal conductivity and surface emissivity of the MWCNT-containing coating layer. The coating showed little influence on water contact angle of the coated fabrics, but slightly decreased the air permeability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermo-Electrochemical cells (Thermocells/TECs) transform thermal energy into electricity by means of electrochemical potential disequilibrium between electrodes induced by a temperature gradient (ΔT). Heat conduction across the terminals of the cell is one of the primary reasons for device inefficiency. Herein, we embed Poly(Vinylidene Fluoride) (PVDF) membrane in thermocells to mitigate the heat transfer effects - we refer to these membrane-thermocells as MTECs. At a ΔT of 12 K, an improvement in the open circuit voltage (Voc) of the TEC from 1.3 mV to 2.8 mV is obtained by employment of the membrane. The PVDF membrane is employed at three different locations between the electrodes i.e. x = 2 mm, 5 mm, and 8 mm where 'x' defines the distance between the cathode and PVDF membrane. We found that the membrane position at x = 5 mm achieves the closest internal ΔT (i.e. 8.8 K) to the externally applied ΔT of 10 K and corresponding power density is 254 nWcm-2; 78% higher than the conventional TEC. Finally, a thermal resistivity model based on infrared thermography explains mass and heat transfer within the thermocells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding of macroalgal dispersal has been hindered by the difficulty in identifying propagules. Different carrageenans typically occur in gametophytes and tetrasporophytes of the red algal family Gigartinaceae, and we may expect that carpospores and tetraspores also differ in composition of carrageenans. Using Fourier transform infrared (FT-IR) microspectroscopy, we tested the model that differences in carrageenans and other cellular constituents between nuclear phases should allow us to discriminate carpospores and tetraspores of Chondrus verrucosus Mikami. Spectral data suggest that carposporophytes isolated from the pericarp and female gametophytes contained κ-carrageenan, whereas tetrasporophytes contained λ-carrageenan. However, both carpospores and tetraspores exhibited absorbances in wave bands characteristic of κ-,ι-, and λ-carrageenans. Carpospores contained more proteins and may be more photosynthetically active than tetraspores, which contained more lipid reserves. We draw analogies to planktotrophic and lecithotrophic larvae. These differences in cellular chemistry allowed reliable discrimination of spores, but pretreatment of spectral data affected the accuracy of classification. The best classification of spores was achieved with extended multiplicative signal correction (EMSC) pretreatment using partial least squares discrimination analysis, with correct classification of 86% of carpospores and 83% of tetraspores. Classification may be further improved by using synchrotron FT-IR microspectroscopy because of its inherently higher signal-to-noise ratio compared with microspectroscopy using conventional sources of IR. This study demonstrates that FT-IR microspectroscopy and bioinformatics are useful tools to advance our understanding of algal dispersal ecology through discrimination of morphologically similar propagules both within and potentially between species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cylinder-planar Ge waveguides are being developed as evanescent-wave sensors for chemical microanalysis. The only non-planar surface is a cylinder section having a 300-mm radius of curvature. This confers a symmetric taper, allowing for direct coupling into and out of the waveguide's 1-mm2 end faces while obtaining multiple reflections at the central <30-μm-thick sensing region. Ray-optic calculations indicate that the propagation angle at the central minimum has a strong nonlinear dependence on both angle and vertical position of the input ray. This results in rather inefficient coupling of input light into the off-axis modes that are most useful for evanescent-wave absorption spectroscopy. Mode-specific performance of the cylinder-planar waveguides has also been investigated experimentally. As compared to a blackbody source, the much greater brightness of synchrotron-generated infrared (IR) radiation allows a similar total energy throughput, but restricted to a smaller fraction of the allowed waveguide modes. However, such angle-selective excitation results in a strong oscillatory interference pattern in the transmission spectra. These spectral oscillations are the principal technical limitation on using synchrotron radiation to measure evanescent-wave absorption spectra with the thin waveguides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface-enhanced infrared absorption (SEIRA) spectra of manganese (III) tetraphenylporphine chloride (Mn(TPP)Cl) on metal island films were measured in transmission mode. Dependences of the enhancement factor of SEIRA on both the sample quantity and the type of evaporated metal were investigated by subsequently increasing the amount of Mn(TPP)Cl on gold and silver substrates. The enhancement increases nonlinearly with the amount of sample and varies slightly with the thickness of metal islands. In particular, the SEIRA transmission method presents an anomalous spectral enhancement by a factor of 579, with substantial spectral shifts, observed only for the physisorbed Mn(TPP)Cl that remained on a 3-nm-thick gold film after immersion of the substrates into acetone. A charge-transfer (CT) interaction between the porphyrinic Mn and gold islands is therefore proposed as an additional factor in the SEIRA mechanism of the porphyrin system. The number of remaining porphyrin molecules was estimated by calibration-based fluorescence spectroscopy to be 2.36×1013 molecules (i.e., ~2.910-11 mol/cm2) for a 3-nm-thick gold film, suggesting that the physisorbed molecules distributed very loosely on the metal island surface as a result of the weak van der Waals interactions. Fluorescence microscopy revealed the formation of microcrystalline porphyrin aggregates during the consecutive increase in sample solution. However, the immersion likely redistributed the porphyrin to be directly attached on the gold surface, as evidenced by an absence of porphyrinic microcrystals and the observed SEIRA enhancement. The distinctive red shift in the UV-visible spectra and the SEIRA-enhanced peaks indicate the presence of a preferred orientation in the form of the porphyrin ring inclined with respect to the gold surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the thermal analysis of liquid containing Al2O3 nanoparticles in a microfluidic platform using an infrared camera. The small dimensions of the microchannel along with the low flow rates (less than 120 μl min−1) provide very low Reynolds numbers of less than 17.5, reflecting practical parameters for a microfluidic cooling platform. The heat analysis of nanofluids has never been investigated in such a regime, due to the deficiencies of conventional thermal measurement systems. The infrared camera allows non-contact, three dimensional and high resolution capability for temperature profiling. The system was studied at different w/w concentrations of thermally conductive Al2O3 nanoparticles and the experiments were in excellent agreement with the computational fluid dynamics (CFD) simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research describes a rapid method for the determination of fatty acid (FA) contents in a micro-encapsulated fish-oil (μEFO) supplement by using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic technique and partial least square regression (PLSR) analysis. Using the ATR-FTIR technique, the μEFO powder samples can be directly analysed without any pre-treatment required, and our developed PLSR strategic approach based on the acquired spectral data led to production of a good linear calibration with R2 = 0.99. In addition, the subsequent predictions acquired from an independent validation set for the target FA compositions (i.e., total oil, total omega-3 fatty acids, EPA and DHA) were highly accurate when compared to the actual values obtained from standard GC-based technique, with plots between predicted versus actual values resulting in excellent linear fitting (R2 ⩾ 0.96) in all cases. The study therefore demonstrated not only the substantial advantage of the ATR-FTIR technique in terms of rapidness and cost effectiveness, but also its potential application as a rapid, potentially automated, online monitoring technique for the routine analysis of FA composition in industrial processes when used together with the multivariate.