35 resultados para Infrared emission spectroscopy

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research describes a rapid method for the determination of fatty acid (FA) contents in a micro-encapsulated fish-oil (μEFO) supplement by using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic technique and partial least square regression (PLSR) analysis. Using the ATR-FTIR technique, the μEFO powder samples can be directly analysed without any pre-treatment required, and our developed PLSR strategic approach based on the acquired spectral data led to production of a good linear calibration with R2 = 0.99. In addition, the subsequent predictions acquired from an independent validation set for the target FA compositions (i.e., total oil, total omega-3 fatty acids, EPA and DHA) were highly accurate when compared to the actual values obtained from standard GC-based technique, with plots between predicted versus actual values resulting in excellent linear fitting (R2 ⩾ 0.96) in all cases. The study therefore demonstrated not only the substantial advantage of the ATR-FTIR technique in terms of rapidness and cost effectiveness, but also its potential application as a rapid, potentially automated, online monitoring technique for the routine analysis of FA composition in industrial processes when used together with the multivariate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid monitoring of the response to treatment in cancer patients is essential to predict the outcome of the therapeutic regimen early in the course of the treatment. The conventional methods are laborious, time-consuming, subjective and lack the ability to study different biomolecules and their interactions, simultaneously. Since; mechanisms of cancer and its response to therapy is dependent on molecular interactions and not on single biomolecules, an assay capable of studying molecular interactions as a whole, is preferred. Fourier Transform Infrared (FTIR) spectroscopy has become a popular technique in the field of cancer therapy with an ability to elucidate molecular interactions. The aim of this study, was to explore the utility of the FTIR technique along with multivariate analysis to understand whether the method has the resolution to identify the differences in the mechanism of therapeutic response. Towards achieving the aim, we utilized the mouse xenograft model of retinoblastoma and nanoparticle mediated targeted therapy. The results indicate that the mechanism underlying the response differed between the treated and untreated group which can be elucidated by unique spectral signatures generated by each group. The study establishes the efficiency of non-invasive, label-free and rapid FTIR method in assessing the interactions of nanoparticles with cellular macromolecules towards monitoring the response to cancer therapeutics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Today the tool industry on a worldwide basis uses hard, wear-resistant, and low-friction coatings produced by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, chemical-vapor deposition (CVD), and physical vapor deposition (PVD). In the current work, two different coatings, nitrocarburized (CN) and titanium carbonitride (TiCN) on M2-grade tool steel, were prepared by commercial diffusion and PVD techniques, respectively. Properties such as thickness, roughness, and hardness were characterized using a variety of techniques, including glow-discharge optical emission spectrometry (GD-OES) and scanning electron microscopy (SEM). A crossed-cylinders wear-testing machine was used to investigate the performances of both coatings under lubrication. The effect of coatings on the performance of lubricants under a range of wear-test conditions was also examined. Degradation of lubricants during tribological testing was explored by Fourier transform infrared (FTIR) spectroscopy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spectroscopic techniques are widely used in forensic laboratories for quantitative and qualitative analysis. This artictle provides an overview of the spectroscopic techniques most commonly encountered in forensic laboratories. Infrared spectroscopy, Raman spectroscopy, X-ray fluorescence, scanning electron microscopy energy dispersive X-ray spectroscopy, and nuclear magnetic resonance spectroscopy are used mainly for identification or characterization of substances. Visible and ultraviolet spectroscopy, atomic absorption spectroscopy and atomic emission spectroscopy are used mainly for measurement of substances or elements. Some techniques can be used for both identification and measurement. Related techniques such as molecular fluorescence, chemiluminescence and synchrotron techniques are also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CrN coatings were formed on plain carbon steel by prenitrocarburizing, followed by thermoreactive deposition and diffusion (TRD) in a fluidized bed furnace at 570 °C. During TRD, Cr was transferred from Cr powder in the fluidized bed to the nitrocarburized substrates by gas-phase reactions initiated by reaction of HCl gas with the Cr. The microstructural processes occurring in the white layer, caused by N diffusion toward the surface during this stage were studied. This study compares TRD atmospheres employing inert gas and HCl or inert gas, H2, and HCl. Surface characterization was performed by scanning electron microscopy (SEM), x-ray diffraction (XRD), and glow-discharge optical-emission spectroscopy (GDOES).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The microstructural processes of Cr(N,C) coating formation by thermoreactive deposition and diffusion (TRD) on pre-nitrocarburised H13 tool steel were studied. Both nitrocarburising and TRD were performed in fluidized bed furnaces at 570 °C. During TRD, chromium was transferred from chromium powder in the fluidized bed, to the nitrocarburised substrates by gas-phase reactions initiated by reaction of HCl gas with the chromium. Addition of 30% H2 to the input inert gas was found to increase the rate of coating formation, although hydrogen reduction resulted in rapid loss of nitrogen to the surface. The reason for the increased rate of coating formation could not be established without further investigation, although several possible explanations have been proposed. It was found that porosity and the formation of an iron nitride ‘cover layer’ during nitrocarburising were the biggest influences on the microstructure of the Cr(N,C) coating. Microstructural characterization of the coatings was performed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GDOES).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ammonia dissociation is the controlling reaction for several important thermochemical heat treatment processes; nitriding, nitrocarburising (ferritic and austenitic) and carbonitriding. The fluidised bed furnace is a convenient and widely used medium for all of these treatments, yet understanding of the reaction in a fluidised bed context is minimal. This paper deals with the influence of process parameters on nitrogen activity aN; temperature, fluidising flowrate, ammonia inlet level, carbonaceous gas. Two basic behaviours were observed; inlet NH3-dependant and inlet NHr insensitive, with a transition region at intermediate temperatures. The nitrocarburising response of steel specimens was measured by optical microscopy of the layer thicknesses and glow discharge optical emission spectroscopy (GD-OES) determination of nitrogen depth-penetration profiles. aN was found by gas analysis of the exit stream ammonia with the aid of a dissociation burette.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four different tool steel materials, P20, H13, M2 and D2, were nitrocarburised at 570°C in a fluidised bed furnace. The reactive diffusion of nitrogen and carbon into the various substrate microstructures is compared and related to the different alloy carbide distributions. The effect of carbon bearing gas (carbon dioxide, natural gas) on carbon absorption is reported, as well as its influence on compound layer growth and porosity. Partial reduction of Fe3O4 at the surface resulted in the formation of a complex, epsi-nitride containing oxide layer. In H13, carbon was deeply absorbed throughout the entire diffusion zone, affecting the growth of grain boundary cementite, nitrogen diffusivity and the sharpness of the compound layer: diffusion zone interface. When natural gas was used, carbon became highly concentrated in the compound layer, while surface decarburisation occurred with carbon dioxide. These microstructural effects are discussed in relation to hardness profiles, and compound layer hardness and ductility. The surfaces were characterised using glow discharge optical emission spectroscopy, optical and scanning electron microscopy and X-ray diffraction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cathodic arc evaporation (CAE) is a widely used technique for generating highly ionised plasma from which hard, wear-resistant PVD coatings can be deposited. A major drawback of this technique is the emission of micrometer-sized droplets of cathode material from the arc spot, which are commonly referred to as ‘macroparticles’. In this study, the effect of cathode poisoning was investigated as a method to reduce the number of macroparticles in PVD coatings. While the study focuses on the reduction of macroparticles in titanium nitride coatings, the outcomes and key findings can be broadly applied to the cathodic arc process, in particular, for the reduction of macroparticles in more advanced CAE coatings. The results support earlier findings that have shown that poisoning of the cathode can reduce the number of macroparticles emitted from the arc spot. The results of glow discharge optical emission spectroscopy (GD-OES) showed that the titanium content of the coatings varied little between the respective coatings despite changes in the deposition pressure from 0.1 to 1.2 Pa. The GD-OES results also showed the presence of oxide contamination at the surface of the coatings, which was significantly reduced with increasing deposition pressure. The coatings were also deposited onto high-speed steel twist drills to compare the metal-cutting performance when dry drilling a workpiece of cast iron. The results of the drill tests showed that tool life increased with a reduction in the number of macroparticles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An accurate kinetics model is essential for understanding the curing mechanism and predicting the end properties of polymer materials. Graphite/epoxy AS4/ 8552 prepreg is a recent high-performance thermosetting composite modified with thermoplastic, which is being used in the manufacture of aircraft and military structures. The isothermal cures of this system along with another thermoplastic toughened high-performance prepreg, the T800H/3900-2 system, were investigated by real-time Fourier transform infrared (FTIR) spectroscopy. The cure rate was quantitatively analyzed based on the concentration profiles of both the epoxy and primary amine groups. Three autocatalytic models were used to determine kinetics parameters for both composite systems. The model which utilizes an empirical term, the final relative conversion (at different isothermal curing temperatures), describes the experimental data of both systems more satisfactorily than the model which applies a diffusion factor. The modeling results suggest that the curing of epoxy within both prepregs can be assumed to be a second order process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The phase behavior, hydrogen bonding interactions and morphology of poly(hydroxyether of bisphenol A) (phenoxy) and poly(var epsilon-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP) were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy and atomic force microscopy (AFM). In this A-b-B/C type block copolymer/homopolymer system, both P2VP and PCL blocks have favorable intermolecular interaction towards phenoxy via hydrogen bonding. However, the hydrogen bonding between P2VP and phenoxy is significantly stronger than that between PCL and phenoxy. Selective hydrogen bonding between phenoxy/P2VP pair at lower phenoxy contents and co-existence of two competitive hydrogen bonding interactions between phenoxy/P2VP and phenoxy/PCL pairs at higher phenoxy contents were observed in the blends. This leads to the formation of a variety of composition dependent nanostructures including wormlike, hierarchical and core–shell morphologies. The blends became homogeneous at 95 wt% phenoxy where both blocks of the PCL-b-P2VP were miscible with phenoxy due to hydrogen bonding. In the end, a model was proposed to explain the microphase morphology of blends based on the experimental results obtained. The swelling of the PCL-b-P2VP block copolymer by phenoxy due to selective hydrogen bonding causes formation of different microphases

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanostructured complexes were prepared from poly(ε-caprolactone)-block-poly(2-vinylpyridine) (PCL-b-P2VP) and poly(4-vinylphenol) (PVPh) in tetrahydrofuran (THF). The phase behavior, specific interactions, and morphology were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). In this A-b-B/C type block copolymer/homopolymer system, both blocks of the PCL-b-P2VP block copolymer have favorable intermolecular interaction toward PVPh via hydrogen bonding, but the interaction between P2VP block and PVPh is significantly stronger than that between PCL block and PVPh. It was found that the disparity in competitive intermolecular interactions, specifically PVPh and P2VP block interact strongly whereas PVPh and PCL block interact weakly, leads to the formation of a variety of nanostructures depending on PVPh concentration. Spherical micelles of 30−40 nm in diameter were obtained in the complex with 10 wt % PVPh, followed by wormlike micelles with size in the order of 40−50 nm in the complexes with 30−60 wt % PVPh. At low PVPh concentrations, PCL interacts weakly with PVPh, whereas in the complexes containing more than 20 wt % PVPh, the PCL block began to interact considerably with PVPh, leading to the formation of composition-dependent nanostructures. The complex becomes homogeneous with PVPh content beyond 60 wt %, since a sufficient amount of PVPh is available to form hydrogen bonds with both PCL and P2VP. Finally, a model was proposed to explain the self-assembly and microphase morphology of these complexes based on the experimental results obtained. The competitive hydrogen-bonding interactions cause the self-assembly and formation of different microphase morphologies.