44 resultados para Induced Response

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The immunocompetence handicap hypothesis (ICHH) suggests that the male sex hormone testosterone has a dual effect; it controls the development and expression of male sexually selected signals, and it suppresses the immune system. Therefore only high quality males are able to fully express secondary sexual traits because only they can tolerate the immunosuppressive qualities of testosterone. A modified version of the ICHH suggests that testosterone causes immunosuppression indirectly by increasing the stress hormone corticosterone (CORT). Lines of Japanese quail (Coturnix japonica) selected for divergent responses in levels of plasma CORT were used to test these hypotheses. Within each CORT response line (as well as in a control stock) we manipulated levels of testosterone in castrated quail by treatment with zero (sham), low or high testosterone implants, before testing the birdsʼ humoral immunity and phytohaemagglutinin (PHA)-induced immune response, as well as body condition. The PHA-induced response was not significantly affected by CORT selected line, testosterone treatment or their interaction. There was, however, a significant effect of CORT line on humoral immunity in that the control birds exhibited the greatest antibody production, but there was no significant effect of testosterone manipulation on humoral immunity. The males in the sham implant treatment group had significantly greater mass than the males in the high testosterone group, suggesting a negative effect of high testosterone on general body condition. We discuss these results in the context of current hypotheses in the field of sexual selection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study determined the role of nitric oxide (NO) in neurogenic vasodilation in mesenteric resistance arteries of the toad Bufo marinus. NO synthase (NOS) was anatomically demonstrated in perivascular nerves, but not in the endothelium. ACh and nicotine caused TTX-sensitive neurogenic vasodilation of mesenteric arteries. The ACh-induced vasodilation was endothelium-independent and was mediated by the NO/soluble guanylyl cyclase signaling pathway, inasmuch as the vasodilation was blocked by the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one and the NOS inhibitors Nω- nitro-L-arginine methyl ester and Nω-nitro-L-arginine. Furthermore, the ACh-induced vasodilation was significantly decreased by the more selective neural NOS inhibitor N5-(1-imino-3-butenyl)-L-ornithine. The nicotine-induced vasodilation was endothelium-independent and mediated by NO and calcitonin gene-related peptide (CGRP), inasmuch as pretreatment of mesenteric arteries with a combination of Nω-nitro-L-arginine and the CGRP receptor antagonist CGRP-(8–37) blocked the vasodilation. Clotrimazole significantly decreased the ACh-induced response, providing evidence that a component of the NO vasodilation involved Ca2+-activated K+ or voltage-gated K+ channels. These data show that NO control of mesenteric resistance arteries of toad is provided by nitrergic nerves, rather than the endothelium, and implicate NO as a potentially important regulator of gut blood flow and peripheral blood pressure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent investigations have implicated the medial prefrontal cortex (mPFC) in modulation of subcortical pathways that contribute to the generation of behavioural, autonomic and endocrine responses to stress. However, little is known of the mechanisms involved. One of the key neurotransmitters involved in mPFC function is dopamine, and we therefore aimed, in this investigation, to examine the role of mPFC dopamine in response to stress in Wistar rats. In this regard, we infused dopamine antagonists SCH23390 or sulpiride into the mPFC via retrodialysis. We then examined changes in numbers of cells expressing the c-fos immediate-early gene protein product, Fos, in subcortical neuronal populations associated with regulation of hypothalamic-pituitary-adrenal (HPA) axis stress responses in response to either of two stressors; systemic injection of interleukin-1β, or air puff. The D1 antagonist, SCH23390, and the D2 antagonist, sulpiride, both attenuated expression of Fos in the medial parvocellular hypothalamic paraventricular nucleus (mpPVN) corticotropin-releasing factor cells at the apex of the HPA axis, as well as in most extra-hypothalamic brain regions examined in response to interleukin-1β. By contrast, SCH23390 failed to affect Fos expression in response to air puff in any brain region examined, while sulpiride resulted in an attenuation of the air puff-induced response in only the mpPVN and the bed nucleus of the stria terminalis. These results indicate that the mPFC differentially processes the response to different stressors and that the two types of dopamine receptor may have different roles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective:
Palatable food disrupts normal appetite regulation, which may contribute to the etiology of obesity. Neuropeptide Y (NPY) and cholecystokinin play critical roles in the regulation of food intake and energy homeostasis, while adiponectin and carnitine palmitoyltransferase (CPT) are important for insulin sensitivity and fatty acid oxidation. This study examined the impact of short- and long-term consumption of palatable high-fat diet (HFD) on these critical metabolic regulators.

Methods:
Male C57BL/6 mice were exposed to laboratory chow (12% fat), or cafeteria-style palatable HFD (32% fat) for 2 or 10 weeks. Body weight and food intake were monitored throughout. Plasma leptin, hypothalamic NPY and cholecystokinin, and mRNA expression of leptin, adiponectin, their receptors and CPT-1, in fat and muscles were measured.

Results:
Caloric intake of the palatable HFD group was 2–3 times greater than control, resulting in a 37% higher body weight. Fat mass was already increased at 2 weeks; plasma leptin concentrations were 2.4 and 9 times higher than control at 2 and 10 weeks, respectively. Plasma adiponectin was increased at 10 weeks. Muscle adiponectin receptor 1 was increased at 2 weeks, while CPT-1 mRNA was markedly upregulated by HFD at both time points. Hypothalamic NPY and cholecystokinin content were significantly decreased at 10 weeks.

Conclusion:
Palatable HFD induced hyperphagia, fat accumulation, increased adiponectin, leptin and muscle fatty acid oxidation, and reduced hypothalamic NPY and cholecystokinin. Our data suggest that the adaptive changes in hypothalamic NPY and muscle fatty acid oxidation are insufficient to reverse the progress of obesity and metabolic consequences induced by a palatable HFD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sodium/proton exchangers (NHE) are transmembrane proteins that facilitate the exchange of a Na+ ion for a H+ ion across cellular membranes. The NHE are present in the gills of fishes and are believed to function in acid-base regulation by driving the extrusion of protons across the branchial epithelium in exchange for Na+ in the water. In this study, we have used reverse transcriptase-polymerase chain reaction (RT-PCR) to detect the presence of a branchial NHE in the gills of the Atlantic hagfish, Myxine glutinosa. The subsequent partial cDNA sequence shares homology with other vertebrate and invertebrate NHE isoforms. In addition, using semi-quantitative, multiplex RT-PCR we demonstrate that mRNA expression of hagfish gill NHE is upregulated following an induced metabolic acidosis. Expression was increased to 4.4 times basal levels at 2-h post-infusion and had decreased to 1.6 times basal by 6 h. Expression had returned to basal levels by 24-h post-infusion. The inference from this study is that a gill NHE which is potentially important in acid-base regulation has been present in the vertebrate lineage since before the divergence of the hagfishes from the main vertebrate line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PMC42-LA cells display an epithelial phenotype: the cells congregate into pavement epithelial sheets in which E-cadherin and beta-catenin are localized at cell-cell borders. They abundantly express cytokeratins, although 5% to 10% of the cells also express the mesenchymal marker vimentin. Stimulation of PMC42-LA cells with epidermal growth factor (EGF) leads to epithelio-mesenchymal transition-like changes including up-regulation of vimentin and down-regulation of E-cadherin. Vimentin expression is seen in virtually all cells, and this increase is abrogated by treatment of cells with an EGF receptor antagonist. The expression of the mesenchyme-associated extracellular matrix molecules fibronectin and chondroitin sulfate proteoglycan also increase in the presence of EGF. PMC42-LA cells adhere rapidly to collagen I, collagen IV, and laminin-1 substrates and markedly more slowly to fibronectin and vitronectin. EGF increases the speed of cell adhesion to most of these extracellular matrix molecules without altering the order of adhesive preference. EGF also caused a time-dependent increase in the motility of PMC42-LA cells, commensurate with the degree of vimentin staining. The increase in motility was at least partly chemokinetic, because it was evident both with and without chemoattractive stimuli. Although E-cadherin staining at cell-cell junctions disappeared in response to EGF, beta-catenin persisted at the cell periphery. Further analysis revealed that N-cadherin was present at the cell-cell junctions of untreated cells and that expression was increased after EGF treatment. N- and E-cadherin are not usually coexpressed in human carcinoma cell lines but can be coexpressed in embryonic tissues, and this may signify an epithelial cell population prone to epithelio-mesenchymal-like responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As muscles become larger and stronger during growth and in response to increased loading, bones should adapt by adding mass, size, and strength. In this unilateral model, we tested the hypothesis that (1) the relationship between muscle size and bone mass and geometry (nonplaying arm) would not change during different stages of puberty and (2) exercise would not alter the relationship between muscle and bone, that is, additional loading would result in a similar unit increment in both muscle and bone mass, bone size, and bending strength during growth. We studied 47 competitive female tennis players aged 8–17 years. Total, cortical, and medullary cross-sectional areas, muscle area, and the polar second moment of area (Ip) were calculated in the playing and nonplaying arms using magnetic resonance imaging (MRI); BMC was assessed by DXA. Growth effects: In the nonplaying arm in pre-, peri- and post-pubertal players, muscle area was linearly associated BMC, total and cortical area, and Ip (r = 0.56–0.81, P < 0.09 to < 0.001), independent of age. No detectable differences were found between pubertal groups for the slope of the relationship between muscle and bone traits. Post-pubertal players, however, had a higher BMC and cortical area relative to muscle area (i.e., higher intercept) than pre- and peri-pubertal players (P < 0.05 to < 0.01), independent of age; pre- and peri-pubertal players had a greater medullary area relative to muscle area than post-pubertal players (P < 0.05 to < 0.01). Exercise effects: Comparison of the side-to-side differences revealed that muscle and bone traits were 6–13% greater in the playing arm in pre-pubertal players, and did not increase with advancing maturation. In all players, the percent (and absolute) side-to-side differences in muscle area were positively correlated with the percent (and absolute) differences in BMC, total and cortical area, and Ip (r = 0.36–0.40, P < 0.05 to < 0.001). However, the side-to-side differences in muscle area only accounted for 11.8–15.9% of the variance of the differences in bone mass, bone size, and bending strength. This suggests that other factors associated with loading distinct from muscle size itself contributed to the bones adaptive response during growth. Therefore, the unifying hypothesis that larger muscles induced by exercise led to a proportional increase in bone mass, bone size, and bending strength appears to be simplistic and denies the influence of other factors in the development of bone mass and bone shape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Potassium phosphonate (phosphite) is widely used in the management of Phytophthora diseases in agriculture, horticulture and natural environments. The Austral grass tree, Xanthorrhoea australis, a keystone species in the dry sclerophyll forests of southern Australia, is susceptible to Phytophthora cinnamomi, but is protected by applications of phosphite. We examined the effect of phosphite application on the infection of X. australis seedlings and cell suspension cultures by zoospores of P. cinnamomi. Phosphite induced more intense cellular responses to pathogen challenge and suppressed pathogen ingress in both seedlings and cell cultures. In untreated X. australis seedlings, hyphal growth was initially intercellular, became intracellular 24 h after inoculation, and by 48 h had progressed into the vascular tissue. In phosphite-treated seedlings, growth of P. cinnamomi remained intercellular and was limited to the cortex, even at 72 h after inoculation. The cell membrane retracted from the cell wall and phenolic compounds and electron dense substances were deposited around the wall of infected and neighbouring cells. Suspension cells were infected within 6 h of inoculation. Within 24 h of inoculation, untreated cells were fully colonised, had collapsed cytoplasm and died. The protoplast of phosphite-treated suspension cells collapsed within 12 h of inoculation, and phenolic material accumulated in adjacent, uninfected cells. No anatomical response to phosphite treatment was observed before infection of plant tissues, suggesting that the phosphite-associated host defence response is induced following pathogen challenge. Anatomical changes provide evidence that phosphite stimulates the host defence system to respond more effectively to pathogen invasion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The uncoupling protein homologs UCP2 and UCP3 have been proposed as candidate genes for the regulation of lipid metabolism. Within the context of this hypothesis, we have compared, from fed and fasted rats, changes in gene expression of skeletal muscle UCP2 and UCP3 with those of carnitine palmitoyltransferase I and medium-chain acyl-CoA dehydrogenase, two key enzymes regulating lipid flux across the mitochondrial #-oxidation pathway. In addition, changes in gene expression of peroxisome proliferator-activated receptor gamma, a nuclear transcription factor implicated in lipid metabolism, were also investigated. The results indicate that in response to fasting, the mRNA levels of UCP2, UCP3, carnitine palmitoyltransferase I and medium-chain acyl-CoA dehydrogenase are markedly increased, by three- to sevenfold, in the gastrocnemius and tibialis anterior (fast-twitch muscles, predominantly glycolytic or oxidative-glycolytic), but only mildly increased, by less than twofold, in the soleus (slow-twitch muscle, predominantly oxidative). Furthermore, such muscle-type dependency in fasting-induced transcriptional changes in UCP2, UCP3, carnitine palmitoyltransferase and medium-chain acyl-CoA dehydrogenase persists when the increase in circulating levels of free fatty acids during fasting is abolished by the anti-lipolytic agent nicotinic acid - with blunted responses only in the slow-twitch muscle contrasting with unabated increases in fast-twitch muscles. Independently of muscle type, however, the mRNA levels of peroxisome proliferator-activated receptor gamma are not altered during fasting. Taken together, these studies indicate a close association between fasting-induced changes in UCP2 and UCP3 gene expression with those of key regulators of lipid oxidation, and are hence consistent with the hypothesis that these UCP homologs may be involved in the regulation of lipid metabolism. Furthermore, they suggest that in response to fasting, neither the surge of free fatty acids in the circulation nor induction of the peroxisome proliferator-activated receptor gamma gene may be required for the marked upregulation of genes encoding the UCP homologs and key enzymes regulating lipid oxidation in fast-twitch muscles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitric oxide (NO) is known to mediate a multitude of biological effects including inhibition of respiration at cytochrome c oxidase (COX), formation of peroxynitrite (ONOO) by reaction with mitochondrial superoxide (O2• −), and S-nitrosylation of proteins. In this study, we investigated pathways of NO metabolism in lymphoblastic leukemic CEM cells in response to glutathione (GSH) depletion. We found that NO blocked mitochondrial protein thiol oxidation, membrane permeabilization, and cell death. The effects of NO were: (1) independent of respiratory chain inhibition since protection was also observed in CEM cells lacking mitochondrial DNA (ρ0) which do not possess a functional respiratory chain and (2) independent of ONOO formation since nitrotyrosine (a marker for ONOOformation) was not detected in extracts from cells treated with NO after GSH depletion. However, NO increased the level of mitochondrial protein S-nitrosylation (SNO) determined by the Biotin Switch assay and by the release of NO from mitochondrial fractions treated with mercuric chloride (which cleaves SNO bonds to release NO). In conclusion, these results indicate that NO blocks cell death after GSH depletion by preserving the redox status of mitochondrial protein thiols probably by a mechanism that involves S-nitrosylation of mitochondrial protein thiols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant innate immunity to pathogenic microorganisms is activated in response to recognition of extracellular or intracellular pathogen molecules by transmembrane receptors or resistance proteins, respectively. The defense signaling pathways share components with those involved in plant responses to UV radiation, which can induce expression of plant genes important for pathogen resistance. Such intriguing links suggest that UV treatment might activate resistance to pathogens in normally susceptible host plants. Here, we demonstrate that pre-inoculative UV (254 nm) irradiation of Arabidopsis (Arabidopsis thaliana) susceptible to infection by the biotrophic oomycete Hyaloperonospora parasitica, the causative agent of downy mildew, induces dose- and time-dependent resistance to the pathogen detectable up to 7 d after UV exposure. Limiting repair of UV photoproducts by postirradiation incubation in the dark, or mutational inactivation of cyclobutane pyrimidine dimer photolyase, (6-4) photoproduct photolyase, or nucleotide excision repair increased the magnitude of UV-induced pathogen resistance. In the absence of treatment with 254-nm UV, plant nucleotide excision repair mutants also defective for cyclobutane pyrimidine dimer or (6-4) photoproduct photolyase displayed resistance to H. parasitica, partially attributable to short wavelength UV-B (280–320 nm) radiation emitted by incubator lights. These results indicate UV irradiation can initiate the development of resistance to H. parasitica in plants normally susceptible to the pathogen and point to a key role for UV-induced DNA damage. They also suggest UV treatment can circumvent the requirement for recognition of H. parasitica molecules by Arabidopsis proteins to activate an immune response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitric oxide is a potential regulator of mitochondrial biogenesis. Therefore, we investigated if mice deficient in endothelial nitric oxide synthase (eNOS-/-) or neuronal NOS (nNOS-/-) have attenuated activation of skeletal muscle mitochondrial biogenesis in response to exercise. eNOS-/-, nNOS-/- and C57Bl6 (CON) mice (16.3 ± 0.2 weeks old) either remained in their cages (basal) or ran on a treadmill (16 m min-1, 5 grade) for 60 min (n = 8 per group) and were killed 6 h after exercise. Other eNOS-/-, nNOS-/- and CON mice exercise trained for 9 days (60 min per day) and were killed 24 h after the last bout of exercise training. eNOS-/- mice had significantly higher nNOS protein and nNOS-/- mice had significantly higher eNOS protein in the EDL, but not the soleus. The basal mitochondrial biogenesis markers NRF1, NRF2α and mtTFA mRNA were significantly (P< 0.05) higher in the soleus and EDL of nNOS-/- mice whilst basal citrate synthase activity was higher in the soleus and basal PGC-1α mRNA higher in the EDL. Also, eNOS-/- mice had significantly higher basal citrate synthase activity in the soleus but not the EDL. Acute exercise increased (P< 0.05) PGC-1α mRNA in soleus and EDL and NRF2α mRNA in the EDL to a similar extent in all genotypes. In addition, short-term exercise training significantly increased cytochrome c protein in all genotypes (P< 0.05) in the EDL. In conclusion, eNOS and nNOS are differentially involved in the basal regulation of mitochondrial biogenesis in skeletal muscle but are not critical for exercise-induced increases in mitochondrial biogenesis in skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existence of gender differences in cardiovascular disease (CVD) following long-chain omega-3 polyunsaturated fatty acid (LCn-3 PUFA) supplementation have suggested that sex hormones play a role in cardio-protection. The objective of this study was to determine gender specific responses in the efficacy of LCn-3 PUFA to inhibit platelet aggregation in vitro. Blood was analyzed for collagen-induced platelet aggregation following pre-incubation with LCn-3 PUFA in healthy adults (n=42). Eicosapentaenoic acid (EPA) was significantly more effective in reducing platelet aggregation compared with docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). When grouped by gender, this differential pattern was followed in males only. In females, DHA, DPA and EPA were all equally effective. Between group analyses (LCn-3 PUFA vs. gender) showed that both DHA and DPA were significantly less effective in males compared with females. EPA was equally effective in reducing platelet aggregation in both groups. These findings show that significant gender differences exist in platelet aggregation in response to various LCn-3 PUFA treatments.