20 resultados para Illumination globale

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reports on the use of radially polarised beam in gold-nanorod-facilitated nonlinear microscopy and therapy. It has been found that the use of radially polarised beam can greatly reduce the energy fluence threshold for treating cancer cells labelled with gold nanorods. The slight distortion in the polarisation properties of the radially polarised beam after propagating through double-clad photonic crystal fibres makes it promising in the application of fibre-optic based endoscopic system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the course of the last decade, infrared (IR) and particularly thermal IR imaging based face recognition has emerged as a promising complement to conventional, visible spectrum based approaches which continue to struggle when applied in practice. While inherently insensitive to visible spectrum illumination changes, IR data introduces specific challenges of its own, most notably sensitivity to factors which affect facial heat emission patterns, e.g. emotional state, ambient temperature, and alcohol intake. In addition, facial expression and pose changes are more difficult to correct in IR images because they are less rich in high frequency detail which is an important cue for fitting any deformable model. In this paper we describe a novel method which addresses these major challenges. Specifically, when comparing two thermal IR images of faces, we mutually normalize their poses and facial expressions by using an active appearance model (AAM) to generate synthetic images of the two faces with a neutral facial expression and in the same view (the average of the two input views). This is achieved by piecewise affine warping which follows AAM fitting. A major contribution of our work is the use of an AAM ensemble in which each AAM is specialized to a particular range of poses and a particular region of the thermal IR face space. Combined with the contributions from our previous work which addressed the problem of reliable AAM fitting in the thermal IR spectrum, and the development of a person-specific representation robust to transient changes in the pattern of facial temperature emissions, the proposed ensemble framework accurately matches faces across the full range of yaw from frontal to profile, even in the presence of scale variation (e.g. due to the varying distance of a subject from the camera). The effectiveness of the proposed approach is demonstrated on the largest public database of thermal IR images of faces and a newly acquired data set of thermal IR motion videos. Our approach achieved perfect recognition performance on both data sets, significantly outperforming the current state of the art methods even when they are trained with multiple images spanning a range of head views.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this chapter we described a novel framework for automatic face recognition in the presence of varying illumination, primarily applicable to matching face sets or sequences. The framework is based on simple image processing filters that compete with unprocessed greyscale input to yield a single matching score between individuals. By performing all numerically consuming computation offline, our method both (i) retains the matching efficiency of simple image filters, but (ii) with a greatly increased robustness, as all online processing is performed in closed-form. Evaluated on a large, real-world data corpus, the proposed framework was shown to be successful in video-based recognition across a wide range of illumination, pose and face motion pattern changes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our aim in this paper is to robustly match frontal faces in the presence of extreme illumination changes, using only a single training image per person and a single probe image. In the illumination conditions we consider, which include those with the dominant light source placed behind and to the side of the user, directly above and pointing downwards or indeed below and pointing upwards, this is a most challenging problem. The presence of sharp cast shadows, large poorly illuminated regions of the face, quantum and quantization noise and other nuisance effects, makes it difficult to extract a sufficiently discriminative yet robust representation. We introduce a representation which is based on image gradient directions near robust edges which correspond to characteristic facial features. Robust edges are extracted using a cascade of processing steps, each of which seeks to harness further discriminative information or normalize for a particular source of extra-personal appearance variability. The proposed representation was evaluated on the extremely difficult YaleB data set. Unlike most of the previous work we include all available illuminations, perform training using a single image per person and match these also to a single probe image. In this challenging evaluation setup, the proposed gradient edge map achieved 0.8% error rate, demonstrating a nearly perfect receiver-operator characteristic curve behaviour. This is by far the best performance achieved in this setup reported in the literature, the best performing methods previously proposed attaining error rates of approximately 6–7%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of matching a face in a low resolution query video sequence against a set of higher quality gallery sequences. This problem is of interest in many applications, such as law enforcement. Our main contribution is an extension of the recently proposed Generic Shape-Illumination Manifold (gSIM) framework. Specifically, (i) we show how super-resolution across pose and scale can be achieved implicitly, by off-line learning of subsampling artefacts; (ii) we use this result to propose an extension to the statistical model of the gSIM by compounding it with a hierarchy of subsampling models at multiple scales; and (iii) we describe an extensive empirical evaluation of the method on over 1300 video sequences – we first measure the degradation in performance of the original gSIM algorithm as query sequence resolution is decreased and then show that the proposed extension produces an error reduction in the mean recognition rate of over 50%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In spite of over two decades of intense research, illumination and pose invariance remain prohibitively challenging aspects of face recognition for most practical applications. The objective of this work is to recognize faces using video sequences both for training and recognition input, in a realistic, unconstrained setup in which lighting, pose and user motion pattern have a wide variability and face images are of low resolution. In particular there are three areas of novelty: (i) we show how a photometric model of image formation can be combined with a statistical model of generic face appearance variation, learnt offline, to generalize in the presence of extreme illumination changes; (ii) we use the smoothness of geodesically local appearance manifold structure and a robust same-identity likelihood to achieve invariance to unseen head poses; and (iii) we introduce an accurate video sequence “reillumination” algorithm to achieve robustness to face motion patterns in video. We describe a fully automatic recognition system based on the proposed method and an extensive evaluation on 171 individuals and over 1300 video sequences with extreme illumination, pose and head motion variation. On this challenging data set our system consistently demonstrated a nearly perfect recognition rate (over 99.7%), significantly outperforming state-of-the-art commercial software and methods from the literature

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Illumination invariance remains the most researched, yet the most challenging aspect of automatic face recognition. In this paper we propose a novel, general recognition framework for efficient matching of individual face images, sets or sequences. The framework is based on simple image processing filters that compete with unprocessed greyscale input to yield a single matching score between individuals. It is shown how the discrepancy between illumination conditions between novel input and the training data set can be estimated and used to weigh the contribution of two competing representations. We describe an extensive empirical evaluation of the proposed method on 171 individuals and over 1300 video sequences with extreme illumination, pose and head motion variation. On this challenging data set our algorithm consistently demonstrated a dramatic performance improvement over traditional filtering approaches. We demonstrate a reduction of 50-75% in recognition error rates, the best performing method-filter combination correctly recognizing 96% of the individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work is to recognize faces using video sequences both for training and novel input, in a realistic, unconstrained setup in which lighting, pose and user motion pattern have a wide variability and face images are of low resolution. There are three major areas of novelty: (i) illumination generalization is achieved by combining coarse histogram correction with fine illumination manifold-based normalization; (ii) pose robustness is achieved by decomposing each appearance manifold into semantic Gaussian pose clusters, comparing the corresponding clusters and fusing the results using an RBF network; (iii) a fully automatic recognition system based on the proposed method is described and extensively evaluated on 600 head motion video sequences with extreme illumination, pose and motion pattern variation. On this challenging data set our system consistently demonstrated a very high recognition rate (95% on average), significantly outperforming state-of-the-art methods from the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Illumination and pose invariance are the most challenging aspects of face recognition. In this paper we describe a fully automatic face recognition system that uses video information to achieve illumination and pose robustness. In the proposed method, highly nonlinear manifolds of face motion are approximated using three Gaussian pose clusters. Pose robustness is achieved by comparing the corresponding pose clusters and probabilistically combining the results to derive a measure of similarity between two manifolds. Illumination is normalized on a per-pose basis. Region-based gamma intensity correction is used to correct for coarse illumination changes, while further refinement is achieved by combining a learnt linear manifold of illumination variation with constraints on face pattern distribution, derived from video. Comparative experimental evaluation is presented and the proposed method is shown to greatly outperform state-of-the-art algorithms. Consistent recognition rates of 94-100% are achieved across dramatic changes in illumination.