18 resultados para ION ENERGY-DISTRIBUTION

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a new agent-based distributed reactive power management scheme is proposed to improve the voltage stability of energy distribution systems with distributed generation units. Three types of agents – distribution system agent, estimator agent, and control agent are developed within the multi-agent framework. The agents simultaneously coordinated their activities through the online information and energy flow. The overall achievement of the proposed scheme depends on the coordination between two tasks – (i) estimation of reactive power using voltage variation formula and (ii) necessary control actions to provide the estimated reactive power to the distribution networks through the distributed static synchronous compensators. A linear quadratic regulator with a proportional integrator is designed for the control agent in order to control the reactive component of the current and the DC voltage of the compensators. The performance of the proposed scheme is tested on a 10-bus power distribution network under various scenarios. The effectiveness is validated by comparing the proposed approach to the conventional proportional integral control approach. It is found that, the agent-based scheme provides excellent robust performance under various operating conditions of the power distribution network.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an analytical model of fuel consumption (AMFC) to coordinate the driving power and manage the overall fuel consumption for an internal combustion engine vehicle. The model calculates the different loads applied on the vehicle including road-slope, road-friction, wind-drag, accessories, and mechanical losses. Also, it solves the combustion equation of the engine under different working conditions including various fuel compositions, excess airs and air inlet temperatures. Then it determines the contribution of each load to signify the energy distribution and power flows of the vehicle. Unlike the conventional models in which the vehicle speed needs to be given as an input, the developed model can predict the vehicle speed and acceleration under different working conditions by allowing the speed to vary within a predefined range only. Furthermore, the model indicates the ways to minimises the vehicles' fuel consumption under various driving conditions. The results show that the model has the potential to assist in the vehicle energy management.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fact that medical images have redundant information is exploited by researchers for faster image acquisition. Sample set or number of measurements were reduced in order to achieve rapid imaging. However, due to inadequate sampling, noise artefacts are inevitable in Compressive Sensing (CS) MRI. CS utilizes the transform sparsity of MR images to regenerate images from under sampled data. Locally sparsified Compressed Sensing is an extension of simple CS. It localises sparsity constraints for sub-regions rather than using a global constraint. This paper, presents a framework to use local CS for improving image quality without increasing sampling rate or without making the acquisition process any slower. This was achieved by exploiting local constraints. Localising image into independent sub-regions allows different sampling rates within image. Energy distribution of MR images is not even and most of noise occurs due to under-sampling in high energy regions. By sampling sub-regions based on energy distribution, noise artefacts can be minimized. Experiments were done using the proposed technique. Results were compared with global CS and summarized in this paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

 The control of energy distribution or energy intensity inside a laser spot using a defocusing method enables the formation of high-quality microchannels of multiple cross-sections in polycarbonate. Moreover, a thermal mathematical model of the process was developed to aid understanding of the process and to allow channel topology prediction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a hybrid DC microgrid consisting of a diesel generator with a rectifier, a solar photovoltaic (PV) system, and a battery energy storage system is presented in relation to an effective power management strategy and different control techniques are adopted to power electronic interfaces. The solar PV and battery energy storage systems are considered as the main sources of energy sources that supply the load demand on a daily basis whereas the diesel generator is used as a backup for the emergency operation of the microgrid. All system components are connected to a common DC bus through an appropriate power electronics devices (e.g., rectifier systems, DC/DC converter). Also a detailed sizing philosophy of all components along with the energy management strategy is proposed. Energy distribution pattern of each individual component has been conducted based on the monthly basis along with a power management algorithm. The power delivered by the solar PV system and diesel generator is controlled via DC-DC converterand excitation controllers which are designed based on a linearquadratic regulator (LQR) technique as as proportional integral (PI)controllers. The component level power distribution is investigatedusing these controllers under fluctuating load and solar irradiationconditions and comparative results are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to investigate correlations between the molecular changes and postcuring reaction on the surface of a diglycidyl ether of bisphenol A and diglycidylether of bisphenol F based epoxy resin cured with two different amine-based hardeners. The aim of this work was to present a proof of concept that ToF-SIMS has the ability to provide information regarding the reaction steps, path, and mechanism for organic reactions in general and for epoxy resin curing and postcuring reactions in particular. Contact-angle measurements were taken for the cured and postcured epoxy resins to correlate changes in the surface energy with the molecular structure of the surface. Principal components analysis (PCA) of the ToFSIMS positive spectra explained the variance in the molecular information, which was related to the resin curing and postcuring reactions with different hardeners and to the surface energy values. The first principal component captured information related to the chemical phenomena of the curing reaction path, branching, and network density based on changes in the relative ion density of the aliphatic hydrocarbon and the C7H7O+ positive ions. The second principal component captured information related to the difference in the surface energy, which was correlated to the difference in the relative intensity of the CxHyNz+ ions of the samples. PCA of the negative spectra provided insight into the extent of consumption of the hardener molecules in the curing and postcuring reactions of both systems based on the relative ion intensity of the nitrogen-containing negative ions and showed molecular correlations with the sample surface energy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Formation of defects in hexagonal and cubic boron nitride (h -BN and c -BN, respectively) under low-energy argon or nitrogen ion-bombardment has been studied by near-edge x-ray absorption fine structure (NEXAFS) around boron and nitrogen K -edges. Breaking of B-N bonds for both argon and nitrogen bombardment and formation of nitrogen vacancies, VN, has been identified from the B K -edge of both h -BN and c -BN, followed by the formation of molecular nitrogen, N2, at interstitial positions. The presence of N 2 produces an additional peak in photoemission spectra around N 1s core level and a sharp resonance in the low-resolution NEXAFS spectra around N K -edge, showing the characteristic vibrational fine structure in high-resolution measurements. In addition, several new peaks within the energy gap of BN, identified by NEXAFS around B and N K -edges, have been assigned to boron or nitrogen interstitials, in good agreement with theoretical predictions. Ion bombardment destroys the cubic phase of c -BN and produces a phase similar to a damaged hexagonal phase. © 2009 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Secondary ion emission from water ice has been studied using Au+, Au3+, and C60+ primary ions. In contrast to the gas phase in which the spectra are dominated by the (H2O)nH+ series of ions, the spectra from ice using all three primary ions are principally composed of two series of cluster ions (H2O)nH+ and (H2O)n+. Dependent on the conditions, the unprotonated series can dominate the spectra. Since in the gas phase (H2O)n+ is unstable with respect to the formation of the protonated ion series, the presence of the solid must provide a means to stabilize their formation. The cluster ion yields under Au+ bombardment are very low and can be understood in terms of sputtering on the borderline between linear cascade and thermal spike behavior. There is a 104 increase in yield across the whole spectrum compared to Au+ when Au3+ and C60+ species are used as primary ions. The character of the spectra differed between these two primary ions, but insights into the mechanism of secondary ion emission for both is discussed within an energy deposition framework provided by the fluid flow-based mesoscale energy deposition footprint (MEDF) model that predicts a cone-shaped zone of activation and emission. C60+ differs from Au3+ in that it delivers its energy closer to the surface, and it is argued this has consequences for the cluster ion distribution and yield. Increasing the ion dose by sputtering suppresses the yield of (H2O)n+ and increases the yield of the protonated ions in the small cluster region, whereas the yield in the large cluster regime is suppressed significantly. The three primary ions show rather different behavior, and this is discussed in the light of the sputtering models. Finally, negative ion spectra including cluster ions have been observed for the first time. C60+ delivers the highest yields, but these are less than 10 times the positive ion yields, probably because the O and OH fragment ions on which the clusters are based are easily neutralized by protons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Large-scale renewable energy (RE) integration into the distribution network (DN) causes uncertainties due to its intermittent nature and is a challenging task today. In general RE sources are mostly connected near the end user level, i.e., in the low voltage distribution network. RE integration introduces bi-directional power flows across distribution transformer (DT) and hence DN experiences with several potential problems that includes voltage fluctuations, reactive power compensation and poor power factor in the DN. This study identifies the potential effects causes due to large-scale integration of RE into the Berserker Street Feeder, Frenchville Substation under Rockhampton DN. From the model analyses, it has clearly evident that voltage of the Berserker Street Feeder fluctuates with the increased integration of RE and causes uncertainties in the feeder as well as the DN.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wind energy is one of the most promising renewable energy sources due to its availability and climate-friendly attributes. Large-scale integration of wind energy sources creates potential technical challenges due to the intermittent nature that needs to be investigated and mitigated as part of developing a sustainable power system for the future. Therefore, this study developed simulation models to investigate the potential challenges, in particular voltage fluctuations, zone substation, and distribution transformer loading, power flow characteristics, and harmonic emissions with the integration of wind energy into both the high voltage (HV) and low voltage (LV) distribution network (DN). From model analysis, it has been clearly indicated that influences of these problems increase with the increased integration of wind energy into both the high voltage and low voltage distribution network, however, the level of adverse impacts is higher in the LV DN compared to the HV DN.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Some of the prospective electrode materials for lithium-ion batteries are known to have electronic transport limitations preventing them from being used in the electrodes directly. In many cases, however, these materials may become practical if they are applied in the form of nanocomposites with a carbon component, e.g. via incorporating nanoparticles of the phase of interest into a conducting network of carbon nanotubes. A simple way to prepare oxide-carbon nanotube composites suitable for the electrodes of lithium-ion batteries is presented in this paper. The method is based on low-energy ball milling. An electrochemically active but insulating phase of LiFeTiO4 is used as a test material. It is demonstrated that the LiFeTiO4-carbon nanotube composite is not only capable of having significantly higher capacity (∼105-120 mA h g-1vs. the capacity of ∼65-70 mA h g -1 for the LiFeTiO4 nanoparticles) at a slow current rate but may also operate at reasonably high current rates. © the Partner Organisations 2014.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molecular dynamics (MD) together with the adaptive biasing force (ABF) and metadynamics free energy calculation methods was used to investigate the permeation properties of salt water through poly(amide) thin film composite reverse osmosis membranes. The thin films were generated by annealing an amorphous cell of poly(amide) chains through an MD method. The MD results showed they have typical structural properties of the active layer of thin film composite membranes and comparable water diffusivity (2.13×10-5cm2/s for the film with a density of 1.06g/cm3) and permeability (9.27×10-15cm3cm/cm2sPa) to experimental data. The simulations of water permeation through the films under different transmembrane pressures revealed the behaviours of water molecules in the thin films and the dynamic regimes of water permeation, including Brownian diffusion, flush and jump diffusion regimes. The intermolecular interactions of water and ions with poly(amide) chains showed a strong dependence on the local structure of films. The attraction between water and ploy(amide) molecules can be up to 8.5kcal/mol in dense polymer regions and 5kcal/mol in the pores of about 3nm. The ABF and metadynamics simulations produced the profiles of free energy potential of water and ions along the depth of the thin films, which provided important information for quantitatively determining the barrier energy required for water permeation and rejection of ions. The thin film with a density of 1.06g/cm3 and a thickness of 6nm offers a rejection to Na+ but a slight absorption of Cl- (0.25kcal/mol) at 0.3-0.4nm distance to its surface. Water molecules must overcome 63kcal/mol energy to move to the centre of the film. The dependences of the barrier energy and the water-polymer interaction energy on the local free volume size in the thin film were analysed. The simulations of water permeation under high transmembrane pressures showed a nonlinear response of the concentration and distribution of water molecules in the film to the imposed pressure. Compaction of the film segments close to the porous substrate and water congestion in dense regions significantly influenced the water permeation when the membrane was operated under pressures of more than 3.0MPa.