136 resultados para INTERLAMINAR FRACTURE

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 2/2 twill weave fabric carbon fibre reinforced epoxy matrix composite MTM56/CF0300 was used to investigate the effect of different manufacturing processes on the interlaminar fracture toughness. Double cantilever beam tests were performed on composites manufactured by hot press, autoclave and 'Quickstep' processes. The 'Quickstep' process was recently developed in Perth, Western Australia for the manufacture of advanced composite components. The values of the mode I critical strain energy release rate (G1d were compared and the results showed that the composite specimens manufactured by the autoclave and the 'Quickstep' process had much higher interlaminar fracture toughness than the specimen produced by the hot press. When compared to specimens manufactured by the hot press, the interlaminar fracture toughness values of the Quickstep and autoclave samples were 38% and 49% higher respectively. The 'Quickstep' process produced composite specimens that had comparable interlaminar fracture toughness to autoclave manufactured composites. Scanning electron microscopy (SEM) was employed to study the topography of the mode I interlaminar fracture surface and dynamic mechanical analysis (DMA) was performed to investigate the fibre/matrix interphase. SEM micrography and DMA spectra indicated that autoclave and 'Quickstep' produced composites with stronger fibre/matrix adhesion than hot press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quickstep ™ is a fluid filled floating mould technology which was recently developed by an Australian company of the same name. The Quickstep and conventional autoclave manufacture of composites were compared by investigating the mode I interlaminar fracture toughness and nanocreep propeties of HexPly914 carbon epoxy composites. It was found that composites cured using the Quickstep technology had significantly higher fracture toughness (1.8 times) than the composites cured via autoclave for this system. DMTA (dynamic mechanical thermal analysis) results showed a higher Tg (glass transition temperature) for the material manufactured by the Quickstep than that cured by the autoclave. FTIR (Fourier transform infrared spectroscopy) spectra did not indicate any difference in cure chemistry between the two processes. Nanocreep experiments were performed to explore the viscoelastic properties of the epoxy matrix of composites. The KelvinVoigt three-element model was applied to analyse the indentation creep behaviour of both composites.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Delamination resistance and nanocreep properties of 2/2 twill weave carbon epoxy composites manufactured by hot press, autoclave, and QuickstepTM process are characterized and analyzed. Quickstep is a fluid filled, balanced pressure heated floating mold technology, which is recently developed in Perth, Western Australia for the manufacture of advanced composite components. Mode I and Mode II interlaminar fracture toughness tests, and nanoindentation creep tests on matrix materials show that the fast ramp rate of the Quickstep process provides mechanical properties comparable to that of autoclave at a lower cost for composite manufacturing. Low viscosity during ramping process and good fiber wetting are believed to be the reasons that this process produces composites with high delamination and creep-resistant properties. Nanocreep properties are analyzed using a Kelvin–Voigt model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of isothermal ageing on two high temperature, bismaleimide composite materials, a novel CSIRO CBR 320/328 composite and a commercial CIBA GEIGY Matrimid® 5292 composite, was examined at 204 and 250 °C. Delamination is a major cause of failure in composite materials, therefore, the Mode I interlaminar fracture toughness (GIC) of both materials was measured using the double cantilever beam (DCB) test. Chemical degradation of the matrix was monitored concurrently using Fourier transform infrared (FTIR) and Raman spectroscopy. Chemical changes at the core of both of these materials were found to occur concomitantly with the observed changes in interlaminar fracture toughness. FTIR analysis of both matrix materials revealed the predominant degradation mechanism to be the oxidation of the methylene group bridging two aromatic rings common to the structure of both resins, and was substantiated by the ingrowth of a broad peak centred at 1600 cm−1 . In addition to this, the pyromellitic anhydride unit present only in the CBR 320/328 composites was found to be highly resistant to the effects of ageing, whereas the saturated imide, common to the cured structures of both materials, was observed to degrade. Raman spectroscopy indicated that the predominant degradation mechanism of the composites differed at the two ageing temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Development of civil aerospace composites is key to future “greener” aircraft. Aircraft manufacturers must improve efficiency of their product and manufacturing processes to remain viable. The aerospace industry is undergoing a materials revolution in the design and manufacture of composite airframes. The Airbus A350 and Boeing 787 (both due to enter service in the latter part of this decade) will push utilisation levels of  composite materials beyond 50% of the total airframe by weight. This  change requires massive investment in materials technology, manufacturing capability and skills development. The Quickstep process provides the ability to rapidly cure aerospace standard composite materials whilst providing enhanced mechanical properties. Utilising fluid to transfer heat to the   composite component during the curing process allows far higher heat rates than with conventional cure techniques. The rapid heat-up rates reduce the viscosity of the resin system greatly to provide a longer processing window introducing greater flexibility and removing the need for high pressure during cure. Interlaminar fracture toughness (Mode I) and Interfacial Shear Strength of aerospace standard materials cured using Quickstep have been    compared to autoclave cured laminates. Results suggest an improvement in fibre-matrix adhesion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interlaminar toughening of a carbon-fibre reinforced composite by incorporation of electrospun polyvinylidene fluoride (PVDF) nanofibrous membranes was explored in this work. The nanofibres were electrospun directly onto commercial pre-impregnated carbon fibre materials under optimised conditions and PVDF was found to primarily crystallise in its β phase polymorphic form. There is strong evidence from DMTA analysis to suggest that a partial miscibility between the amorphous phases of the PVDF nanofibres and the epoxy exists. The improved plastic deformation at the crack tip after inclusion of the nanofibres was directly translated to a 57% increase in the mode II interlaminar fracture toughness (in-plane shear failure). Conversely, the fracture toughness in mode I (opening failure) was slightly lower than the reference by approximately 20%, and the results were interpreted from the complex micromechanisms of failure arising from the changes in polymorphism of the PVDF.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrospun nanofibres have emerged as important fibrous materials for diverse applications. They have been shown excellent toughening results when they are applied as interlayer materials between carbon/epoxy laminas in the structural carbon fibre reinforced epoxy matrix composites. They also exhibit synergistic modification effects when they are combined with carbon nanofibres in the thermosetting polymer matrix. In this study, electrospun polyetherketone cardo (PEK-C) nanofibres were used in two ways: directly electrospun onto the surface of carbon fabric [1], and blended with epoxy resin in the form of PEK-C/VGCNF (vapour grown carbon nanofibre) composite nanofibres[2].The interlaminar fracture toughness, flexural properties and thermal mechanical properties of the modified systems were investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new finite modelling approach is presented to analyse the mode I delamination fracture toughness of z-pinned laminates using the computationally efficient embedded element technique. In the FE model,each z-pin is represented by a single one-dimensional truss element that is embedded within the laminate. Each truss is given the material, geometric and spatial properties associated with the global crackbridging traction response of a z-pin in the laminate; this simplification provides a computationally efficient and flexible model where pin elements are independent of the underlying structural mesh for thelaminate. The accuracy of the FE modelling approach is assessed using mode I interlaminar fracture toughness data for a carbon-epoxy laminate reinforced with z-pins made of copper, titanium or stainless steel. The model is able to predict with good accuracy the crack growth resistance curves and fracture toughness properties for the different types of z-pinned laminate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Voids are one of the most significant defects found within composites and have been demonstrated to reduce the performance of composite structures. The understanding of the impact of the size and distribution of voids on laminate properties is still limited because voids have proven difficult to deliberately control. This study aims to understand the mechanisms by which voids are generated within out-of-autoclave cured laminates. In this study, a process of prepreg conditioning was developed to control the level of voids within test laminates. Non-conditioned laminates highlighted signs of void growth (1.5%), while conditioned laminates showed consistently low levels of voids (<0.3%). Mass spectrometry indicated higher levels of aqueous and solvent volatiles within the non-conditioned prepreg. Finally, Mode II fracture testing revealed a 21% improvement in toughness for the non-voided laminates. A model on the effect of voids within the Mode II stress state has also been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Al6061-20%Al2O3 powder metallurgy (PM) metal matrix composite (MMC) with a strongly clustered particle distribution is subjected to equal channel angular pressing (ECAP) at a temperature of 370 °C. The evolution of the homogeneity of the particle distribution in the material during ECAP is investigated by the quadrat method. The model proposed by Tan and Zhang [Mater Sci Eng 1998;244:80] for estimating the critical particle size which is required for a homogeneous particle distribution in PM MMCs is extended to the case of a combination of extrusion and ECAP. The applicability of the model to predict a homogeneity of the particle distribution after extrusion and ECAP is discussed. It is shown that ECAP leads to an increase of the  uniformity of the particle distribution and the fracture toughness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

'Torayca' T800H/3900-2 is the first material qualified on Boeing Material Specification (BMS 8-276) which utilizes the thermoplastic-particulate interlayer toughening technology. Two manufacturing processes, the autoclave process and the fast heating rated Quickstep™ process, were employed to cure this material. The Quickstep process is a unique composite production technology which utilizes the fast heat transfer rate of fluid to heat and cure polymer composite components. The manufacturing influence on the mode I delamination fracture toughness of laminates was investigated by performing double cantilever beam tests. The composite specimens fabricated by two processes exhibited dissimilar delamination resistance curves (R-curves) under mode I loading. The initial value of fracture toughness GIC-INIT was 564 J/m2 for the autoclave specimens and 527 J/m2 for the Quickstep specimens. However, the average propagation fracture toughness GIC-PROP was 783 J/m2 for the Quickstep specimens, which was 2.6 times of that for the autoclave specimens. The mechanism of fracture occurred during delamination was studied under scanning electron microscope (SEM). Three types of fracture were observed: the interlayer fracture, the interface fracture, and the intralaminar fracture. These three types of fracture played different roles in affecting the delamination resistance curves during the crack growth. More fiber bridging was found in the process of delamination for the Quickstep specimens. Better fiber/matrix adhesion was found in the Quickstep specimens by conducting indentation-debond tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While advanced high strength steels (AHSS) have numerous advantages for the automotive industry, they can be susceptible to interfacial fracture when spot-welded. In this study, the susceptibility of interfacial fracture to spot-weld microstructure and hardness is examined, as well as the corresponding relationships between fatigue, overload performance, and interfacial fracture for a TRIP (transformation induced plasticity) steel. Simple post-weld heat-treatments were used to alter the weld microstructure. The effect on interfacial fracture of diluting the weld pool by welding the TRIP material to non-TRIP steel was examined, along with the effect of altering the base material microstructure. Results show that weld hardness is not a good indicator of either the susceptibility to interfacial fracture, or the strength of the joint, and that interfacial fracture does not necessarily lead to a decrease in strength compared to conventional weld-failure mechanisms, i.e. button pullout. It was also found that while interfacial fracture does affect low cycle to failure behavior, there was no effect on high cycle fatigue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he aetiology of osteoporotic vertebral fractures is multi-factorial, and cannot be explained solely by low bone mass. After sustaining an initial vertebral fracture, the risk of subsequent fracture increases greatly. Examination of physiologic loads imposed on vertebral bodies may help to explain a mechanism underlying this fracture cascade. This study tested the hypothesis that model-derived segmental vertebral loading is greater in individuals who have sustained an osteoporotic vertebral fracture compared to those with osteoporosis and no history of fracture. Flexion moments, and compression and shear loads were calculated from T2 to L5 in 12 participants with fractures (66.4 ± 6.4 years, 162.2 ± 5.1 cm, 69.1 ± 11.2 kg) and 19 without fractures (62.9 ± 7.9 years, 158.3 ± 4.4 cm, 59.3 ± 8.9 kg) while standing. Static analysis was used to solve gravitational loads while muscle-derived forces were calculated using a detailed trunk muscle model driven by optimization with a cost function set to minimise muscle fatigue. Least squares regression was used to derive polynomial functions to describe normalised load profiles. Regression co-efficients were compared between groups to examine differences in loading profiles. Loading at the fractured level, and at one level above and below, were also compared between groups. The fracture group had significantly greater normalised compression (p = 0.0008) and shear force (p < 0.0001) profiles and a trend for a greater flexion moment profile. At the level of fracture, a significantly greater flexion moment (p = 0.001) and shear force (p < 0.001) was observed in the fracture group. A greater flexion moment (p = 0.003) and compression force (p = 0.007) one level below the fracture, and a greater flexion moment (p = 0.002) and shear force (p = 0.002) one level above the fracture was observed in the fracture group. The differences observed in multi-level spinal loading between the groups may explain a mechanism for increased risk of subsequent vertebral fractures. Interventions aimed at restoring vertebral morphology or reduce thoracic curvature may assist in normalising spine load profiles.