3 resultados para I3

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of new electrolyte materials based on a molecular plastic crystal doped by different iodide salts together with iodine have been prepared and characterized by thermal analysis, ionic conductivity, electrochemical and solid-state NMR diffusion measurements. In these materials, the plastic crystal phase of succinonitrile acts as a good matrix for the quaternary ammonium based iodides and iodine and appears to act in some cases as a solid-state “solvent” for the binary dopants. The materials were prepared by mixing the components in the molten state with subsequent cooling into the plastic crystalline state. This resulted in waxy-solid electrolytes in the temperature range from − 40 to 60 °C. The combination of structural variation of the cations, and fast redox couple diffusion (comparable with liquid-based electrolytes), as well as a high ionic conductivity of up to 3 × 10− 3 S cm− 1 at ambient temperature, make these materials very attractive for potential use in solid-state photoelectrochemical cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High current-carrying capacity and rapid, liquidlike diffusion were achieved in a dye-sensitized solar cell (DSSC) based on the plastic-crystalline electrolyte succinonitrile and the I/I3 redox couple (see diagram). This could lead to the development of true solid-state DSSCs without conventional organic-liquid electrolytes, which can cause problems with long-term device stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The natural-convection flow and associated heat transfer in a fluid-saturated porous medium have been investigated using the generalized porous medium approach for a dome-shaped enclosure. Many new features have been predicted with the connective heat transfer and the shape of the top dome cover. The solutions are obtained for a wide range of Darcy and Rayleigh numbers for different offsets and eccentricities of the top dome covers. The detailed parametric study reveals that there is a significant change in heat transfer rate when the offset is between 0.2 and 0.4. Different shapes of conic section, such as circular, elliptical, parabolic, and hyperbolic are used for the top dome cover, and their effects on natural convection and heat transfer rates are studied.