8 resultados para Hydroforming

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tube hydroforming has been widely used to produce automotive structural components due to the superior properties of the hydroformed parts in terms of their light weight and structural rigidity. Compared to the traditional manufacturing process for a closed-section member including stamping and followed by welding, tube-hydro forming leads to cost savings due to reduced tooling and material handling. However, the high pressure pumps and high tonnage press required in hydroforming, lead to increased capital investment reducing the cost benefits. This study explores low pressure tube hydro forming which reduces the internal fluid pressure and die closing force required to produce the hydroformed part. The experimental and numerical analysis was for low pressure hydro formed stainless steel tubes. Die filling conditions and thickness distributions are measured and critically analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydroforming is one option to reduce vehicle weight while increasing component stiffness and rigidity. This typically involves using a fluid to form a component with high internal pressure. Tube hydroforming has gained increasing interest in the automotive and aerospace industries because of its many advantages such as part consolidation, good quality of the formed part etc. The main advantage is that the uniform pressure can be transferred to whole part at the same time. In low pressure hydroforming, the internal pressure is significantly and the hydroformed section length of line stays almost the same as the circumference of the blank tube. This paper details the comparison between high and low pressure hydroforming. It is shown that the internal pressure and holding force required for low pressure hydroforming process is much less than that of high pressure. Also stress and thickness distribution are more uniform and the process is highly suitable for the forming of advanced high strength steels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing application of hydroforming for the production of automotive lightweight components is mainly due to the attainable advantages regarding part properties and improving technology of the forming equipment. However, the high pressure requirements during hydroforming decreases the costs benefit and make the part expensive. Another requirement of automotive industries is weight reduction and better crash performance. Thereby steel industries developed advanced high strength steels which have high strength, good formability and better crash performance. Even though the thickness of the sheet to form the component is reduced, the pressure requirement to form the part during expansion is still high during high pressure hydroforming. This paper details the comparison between high and low pressure tube hydroforming for the square cross-section geometry. It is determined that the internal pressure and die closing force required for low pressure tube hydroforming process is much less than that of high pressure tube hydroforming process. The stress and thickness distribution of the part during tube crushing were critically analysed. Further, the stress distribution and forming mode were studied in this paper. Also friction effect on both processes was discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hollow structures made of Advanced High Strength Steel (AHSS) are increasingly used in the automobile industry for crash and structural components. Generally high pressure hydroforming is used to form these tabular parts, which is a costly manufacturing process due to the high pressure equipment and large tonnage presses required. A new process termed low pressure hydroforming, where a pressurized tube is crushed between two dies, represents a more cost effective alternative due to the lower pressures and die closing forces required.

In this study the low pressure tube hydroforming of one simple and two different complex hollow shapes is investigated. The complexities of the pat1S compared to simple shapes are critically studied and the die filling conditions are investigated and discussed. FUl1hennore the thickness distributions over the circumference of the part during forming are analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced high strength steels (AHSS), in particular, are an attractive group materials, offering higher strength for improved energy absorption and the opportunity to reduce weight through the use of thinner gauges. High pressure tube hydroforming (HPTH) has been used to produce safety components for these steels, but it is expensive. Low pressure tube hydroforming (LPTH) is a lower cost alternative to form the safety components in the car. The side intrusion beam is the second most critical part after front rail in the car structure for passenger safety during crash. The forming as well as crash behaviour of a square side intrusion beam from both processes was investigated using numerical simulation. This paper investigated the interaction between the forming and crash response of these materials in order to evaluate their potential for use in vehicle design for crashworthiness. The energy absorption characteristics of the different tubes were calculated and the results from the numerical analyses compared for both hydroforming process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis identified how advanced high strength steels perform compared to conventional steels in terms of weight reduction and crash performance for automotive bodies. The novel production method of low pressure tube hydroforming was applied to form these advanced steels to reduce the press tonnage and fluid pressure compared to the conventional high pressure process. In addition analytical models were developed to predict the force and pressure in the low pressure process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Approximate models are often used for the following purposes: in on-line control systems of metal forming processes where calculation speed is critical; to obtain quick, quantitative information on the magnitude of the main variables in the early stages of process design; to illustrate the role of the major variables in the process; as an initial check on numerical modelling; and as a basis for quick calculations on processes in teaching and training packages. The models often share many similarities; for example, an arbitrary geometric assumption of deformation giving a simplified strain distribution, simple material property descriptions - such as an elastic, perfectly plastic law - and mathematical short cuts such as a linear approximation of a polynomial expression. In many cases, the output differs significantly from experiment and performance or efficiency factors are developed by experience to tune the models. In recent years, analytical models have been widely used at Deakin University in the design of experiments and equipment and as a pre-cursor to more detailed numerical analyses. Examples that are reviewed in this paper include deformation of sandwich material having a weak, elastic core, load prediction in deep drawing, bending of strip (particularly of ageing steel where kinking may occur), process analysis of low-pressure hydroforming of tubing, analysis of the rejection rates in stamping, and the determination of constitutive models by an inverse method applied to bending tests.