72 resultados para Hydraulic Conductivity

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the performance of bentonite components of geosynthetic clay liners (GCLs) when exposed to aggressive leachates using the fluid loss test and provides a possible quick method for estimating the effect of acidic conditions on hydraulic conductivity. Fluid loss generally increases with increasing acid concentrations. Hydraulic conductivity values back-calculated from the fluid loss tests (kFL) are compared with the values measured using a flexible-wall permeameter (kTri).Generally, the predicted hydraulic conductivity values are conservative (kFL/kTri > 1) under water and low acid concentrations(≤0.015 mol/L). However, the back-calculated hydraulic conductivity is shown to be nonconservative (kFL/kTri < 1) at high acid concentrations (≥0.125 mol/L).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dam sites provide an outstanding opportunity to explore dynamic changes in the groundwater flow regime because of the high hydraulic gradient rapidly induced in their surroundings. This paper investigates the temporal changes of the hydraulic conductivities of the rocks and engineered structures via a thorough analysis of hydrological data collected at the Dokam Dam, Iraq, and a numerical model that simulates the Darcian component of the seepage. Analysis of the data indicates increased seepage with time and suggests that the hydraulic conductivity of the rocks increased as the conductivity of the grout curtain decreased. Conductivity changes on the order of 10-8m/s, in a 20-yr period were quantified using the numerical analysis. It is postulated that the changes in hydraulic properties in the vicinity of Dokan Dam are due to suspension of fine materials, interbedded in small fissures in the rocks, and re-settlement of these materials along the curtain. Consequently, the importance of the grout curtain to minimize the downstream seepage, not only as a result of the conductivity contrast with the rocks, but also as a barrier to suspended clay sediments, is demonstrated. The numerical analysis also helped us to estimate the proportion of the disconnected karstic conduit flow to the overall flow.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of adding glycerol carbonate (GC) or propylene carbonate (PC) to sodium (Na)-bentonite on the hydraulic performance of geosynthetic clay liners (GCLs) under hypersaline conditions is examined. Fluid loss (FL), swell index (SI) and solution retention capacity (SRC) measurements were carried out to compare the potential hydraulic performance of these two cyclic organic carbonates (COCs) as bentonite modifiers. A modified FL test enabled quantitative measurement of both the water retention characteristics of untreated and COC modified bentonites as well as calculation of hydraulic conductivity values. Tests under aggressively saline conditions (ionic strength, I ≥ 1 M of NaCl and ≥3 M of CaCl2) showed that at a mass ratio of 1:1 (GC to bentonite), the FL of a GC-Na-bentonite was ≈40–104 mL in NaCl and ≈61–91 mL in CaCl2. This was about 10–20 mL and 70–200 mL, respectively, lower than that of a comparable PC-Na-bentonite (1:1 PC to bentonite) and untreated Na-bentonite. Greater swelling (SI) and greater solution retention capacity (SRC) was observed for the GC treated Na-bentonite compared to untreated Na-bentonite in all salt solutions, and for PC-Na-bentonite at high ionic strength of both NaCl and CaCl2 solutions, demonstrating the superior hydraulic barrier performance of COC-bentonites under severely saline conditions. Experiments conducted in flexible-wall permeameters with I = 3 M CaCl2 showed approximately one order of magnitude lower (∼10−11 m/s vs ∼1.9 × 10−10 m/s) hydraulic conductivity of GC treated bentonite cake compared to the k value of the untreated Na-bentonite cake. Calculated hydraulic conductivity from fluid loss tests estimated the measured values in a conservative way (overestimation).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ability of geosynthetic clay liners (GCLs) to contain acidic mining leachates is examined. The results of saturated hydraulic conductivity (k) of two GCLs permeated with sulfuric acid solutions (H2SO4) at 0.015M, 0.125M and 0.5M concentrations are reported. Also, the saturated k values of consolidated (35kPa) bentonite cakes made from sodium bentonite extracted from both GCLs were compared to a commonly used magnesium-sodium form bentonite. Chemical compatibility and effects of pre-hydration and effective stress were assessed as part of this study. Results indicated that an increased acid concentration (ionic strength) increased the k of all tested specimens. The ratio of the k0.5 values for non-prehydrated specimens permeated with 0.5M H2SO4 to the kw values for specimens permeated with deionized (DI) water (k0.5/kw) ranged from 10 to 110. Pre-hydration (50-140% water content) and increased effective stress (35-200kPa) improved the performance of GCLs (lower k). Strong correlations were observed between k and liquid limit and swell index parameters independent of pre-hydration and effective stress in this study. However, care should still be taken when using these correlations to evaluate hydraulic performance because the intrinsic micro-structure properties of bentonite, such as porosity, should also be considered. This work showed that, for example, high SI of bentonite does not translate necessarily to a better hydraulic performance of GCLs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many environmental studies require accurate simulation of water and solute fluxes in the unsaturated zone. This paper evaluates one- and multi-dimensional approaches for soil water flow as well as different spreading mechanisms to model solute behavior at different scales. For quantification of soil water fluxes,Richards equation has become the standard. Although current numerical codes show perfect water balances, the calculated soil water fluxes in case of head boundary conditions may depend largely on the method used for spatial averaging of the hydraulic conductivity. Atmospheric boundary conditions, especially in the case of phreatic groundwater levels fluctuating above and below a soil surface, require sophisticated solutions to ensure convergence. Concepts for flow in soils with macro pores and unstable wetting fronts are still in development. One-dimensional flow models are formulated to work with lumped parameters in order to account for the soil heterogeneity and preferential flow. They can be used at temporal and spatial scales that are of interest to water managers and policymakers. Multi-dimensional flow models are hampered by data and computation requirements.Their main strength is detailed analysis of typical multi-dimensional flow problems, including soil heterogeneity and preferential flow. Three physically based solute-transport concepts have been proposed to describe solute spreading during unsaturated flow: The stochastic-convective model (SCM), the convection-dispersion equation (CDE), and the fraction aladvection-dispersion equation (FADE). A less physical concept is the continuous-time random-walk process (CTRW). Of these, the SCM and the CDE are well established, and their strengths and weaknesses are identified. The FADE and the CTRW are more recent,and only a tentative strength weakness opportunity threat (SWOT)analysis can be presented at this time. We discuss the effect of the number of dimensions in a numerical model and the spacing between model nodes on solute spreading and the values of the solute-spreading parameters. In order to meet the increasing complexity of environmental problems, two approaches of model combination are used: Model integration and model coupling. Amain drawback of model integration is the complexity of there sulting code. Model coupling requires a systematic physical domain and model communication analysis. The setup and maintenance of a hydrologic framework for model coupling requires substantial resources, but on the other hand, contributions can be made by many research groups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We attempt to generate new solutions for the moisture content form of the one-dimensional Richards' [1931] equation using the Lisle [1992] equivalence mapping. This mapping is used as no more general set of transformations exists for mapping the one-dimensional Richards' equation into itself. Starting from a given solution, the mapping has the potential to generate an infinite number of new solutions for a series of nonlinear diffusivity and hydraulic conductivity functions. We first seek new analytical solutions satisfying Richards' equation subject to a constant flux surface boundary condition for a semi-infinite dry soil, starting with the Burgers model. The first iteration produces an existing solution, while subsequent iterations are shown to endlessly reproduce this same solution. Next, we briefly consider the problem of redistribution in a finite-length soil. In this case, Lisle's equivalence mapping is generalized to account for arbitrary initial conditions. As was the case for infiltration, however, it is found that new analytical solutions are not generated using the equivalence mapping, although existing solutions are recovered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Results of experiments investigating geochemical changes during artificial recharge of treated wastewater at a coastal sandfill, reclaimed with sand dredged from the seabed, are reported in this paper. Laboratory batch experiments were conducted using secondary effluent (SE) and SE treated with an additional ultrafiltration process (UF), and wastewater treated by reverse osmosis (RO) process, mixed with surface sand obtained from the sandfill. Experiments with RO showed a net increase of 0.41 meq/L, 0.12 meq/L and 0.31 meq/L for Ca(2 + ), Mg(2 + ) and HCO(3) (-), respectively. UF and SE also exhibited net increase in Ca(2 + ), Mg(2 + ) and HCO(3) (-) indicating carbonate mineral dissolution. All three waters were found to be over-saturated with respect to calcite. Carbonate dissolution reactions were observed in the field experiments. However, the presence of imported clays from the borrow source gave rise to ion exchange reactions where Na(+) attached to the clay particles were exchanged for Ca(2 + ) and Mg(2 + ) inducing mineral dissolution, driven by sub-saturation conditions. This resulted in an increase in pH with maximum values in excess of 9.0. It was also found that the sodium adsorption ratio remained high (>10) even after the groundwater had been diluted sufficiently to freshwater levels (ionic strength, I <0.015) indicating a potential for the dispersion of clay particles. This could have a deleterious consequence on porosity and hydraulic conductivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An overview of the design and performance of geosynthetics in composite barrier systems for biopiles used to remediate hydrocarbon-contaminated soil at Casey Station, Antarctica, is presented. Seven instrumented biopiles were constructed over three field seasons. To minimize the risk of hydrocarbon migration to groundwater, composite barrier systems were used (each using different combinations of geosynthetic clay liners (GCLs), high density polyethylene (HDPE) geomembranes (GMB), and geotextiles (GTXs)). One biopile used a co-extruded geomembrane (HDPE with an ethylene vinyl alcohol (EVOH) core). The liner system was subject to a combination of coupled phenomena that could interact and affect the GMB-GCL composite barrier performance. The exposure conditions involved potential freeze-thaw cycling, hydration-desiccation cycles, cation exchange, direct and diffusive exposure to hydrocarbons. The effect of these phenomena was investigated by monitoring GCL and GMB sacrificial coupons. GCL coupons were placed between the main GCL component and the main geomembrane component of the composite liner and GMB coupons placed between the main GMB sheet and the GTX protection layer. Coupons were exhumed from the biopiles each year. The exhumed GCL field moisture content values ranged from 162% to 22%. After three (3) years in the field, GCL coupons that had undergone at least one hydration/desiccation cycle showed no significant change in swell index values or fluid loss values. The measured hydraulic conductivity of exhumed GCL coupons from Biopiles 1 and 2 (3 × 10-11 m s-1) was within the expected range and not significantly different from the values for virgin GCL. GMB coupons exhumed after three years from Biopiles 1 and 2 showed no significant change in oxidative induction time (OIT), melt flow index or tensile properties. Diffusion tests were performed as an index test for establishing the performance of the GMBs as a diffusive barrier to hydrocarbons, with permeation parameters for BTEX contaminants ranging from P g = 0.9-9.2 × 10-13 m2 s-1 for the exhumed GMB (with values depending on the contaminant and GMB). These values were similar to the parameters obtained for virgin GMBs and there was no significant change with field exposure, with GMBs appearing to be performing well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bentonite is a natural clay mineral widely used in the mining and solid waste containment industry, for example, as a soil mixture for the construction of seepage barriers, or as a component of geosynthetic clay liners (GCLs), to provide low hydraulic conductivity. However, degradation of bentonites generally occurs when permeated with acid solutions, such as encountered in mining applications, which may influence physical properties, and particularly, the hydraulic performance of geosynthetic clay liners.In this paper, properties such as Atterberg limits, free swell index, and fluid loss of three bentonites were measured with different concentrations of sulphuric acid solutions. These properties were found to deteriorate even with low (0.015 M) sulphuric acid solutions; higher concentrations (up to 1 M) resulted in larger degradation. X-ray diffraction and infrared spectroscopy were used to monitor the change of bentonites after interaction with the acid solutions. Acid leachates in general result in the overall degradation of the hydraulic performance of geosynthetic clay liners and potentially, any bentonite-soil mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of pyrrole, anthraquinone-2-sulphonic acid (AQSA) and iron(III) chloride (FeCl3) concentrations, reaction time and temperature on the electrical conductivity of polypyrrole (PPy) - coated poly(ethylene terephthalate) (PET) fabrics were investigated. With an increase in both the AQSA and FeCl3 concentrations, resistivity decreased to a point beyond which higher concentrations led to increased surface resistivity. Erosion of the polymer coating, in dynamic synthesis from continual abrasion, manifested as an exponential increase in the resistance of the coated textile substrate. This was not encountered in static synthesis conditions. Temperature affected the degree of surface and bulk polymerisation. The effect of polymerisation temperature on conductivity was negligible. Conductive polymer coating on textiles through chemical polymerisation enabled a smooth coherent film to encase individual fibres, which did not affect the tactile properties of the host substrate. The optimum FeCl3/pyrrole and AQSA FeCl3/pyrrole molar ratios were found to be 2.22 and 0.40 respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ten anionic compounds, including four acidic dyes, were used to dope polypyrrole powder. The effects of the dopants on density, optical absorption and conductivity of the polypyrroles were studied. The presence of the dopant in the conducting polymer matrix was verified by ATR-FTIR spectroscopy. Density function theory (DFT) simulation was used to understand the effect of the dopants on the solid structure, optical absorption and energy band structures. Anthraquinone-2-sulfonic acid-doped polypyrrole yielded the highest conductivity. The dye-doped polypyrrole showed an enhancement in its UV–vis optical absorption.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface resistance of polypyrrole (PPy)-coated polyester fabrics was investigated and related to coating thickness, which was controlled by adjusting the reactant concentrations. The thickness of the coating initially increased rapidly followed by a steady increase when the concentration of pyrrole (Py) was larger than a concentration of approximately 0.4 mg/ml. The surface resistance decreased from 106 to 103 Ω with increase in pyrrole concentration within 0.2 mg/ml until the concentration reached a value of about 0.4 mg/ml, above which the rate of decrease diminished. The effect of initial treatment with monomer or oxidant prior to polymerisation reaction with regards to thickness and surface resistance was minimal. The immersion time of the textile into the monomer solution prior to polymerisation reaction did not have a significant effect on the abrasion resistance.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods of improving the thermal conductivity of wool fabrics have been investigated. Thermal conductivity measurement techniques, influence of synthesis parameters on the thermal conductivity of polypyrrole (PPy)-coated wool fabrics, and the relationship between electrical conductivity and thermal conductivity of PPy-coated wool fabrics are presented. An improvement in thermal conductivity was observed when fabrics were coated with the PPy. The thermal conductivity increased with the increase of pyrrole concentration and synthesis time. Anthraquinone-2-sulfonic acid and ferric chloride showed an optimal concentration for their influence on the thermal conductivity of the coated fabric. The improvement of thermal conductivity of wool fabrics is also investigated by Physical Vapor Deposition technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the resistance change in conductive polypyrrole-coated PET fabrics under the AS 2001.4.15 – 1994 laundering test conditions. The effects of individual detergent components of a standard detergent, including auxiliary chemicals, at four different temperatures were studied. When the coated fabric was washed under the AS 2001.4.15-1994 conditions, the ECE reference detergent and pure soap flakes (sodium sterate) both decreased the conductivity of the coating at a rate exponentially proportional to the laundering temperature. Detergent types had an influence over the rate of degradation; pH conditions had a large influence on the rate of polymer deterioration with the acidic nonionic detergent giving rise to significantly improved laundering conditions. The auxiliary chemicals, sodium carbonate and sodium perborate were seen to cause large degradation of polymers during laundering. Ethylene diamine tetra acetic acid was seen to have only a slight influence on the reduction of conductivity of polymers.