15 resultados para Hybridized Evolutionary Algorithms

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper comprehensively investigates performance of evolutionary algorithms for design optimization of shell and tube heat exchangers (STHX). Genetic algorithm (GA), firefly algorithm (FA), and cuckoo search (CS) method are implemented for finding the optimal values for seven key design variables of the STHX model. ε-NTU method and Bell-Delaware procedure are used for thermal modeling of STHX and calculation of shell side heat transfer coefficient and pressure drop. The purpose of STHX optimization is to maximize its thermal efficiency. Obtained results for several simulation optimizations indicate that GA is unable to find permissible and optimal solutions in the majority of cases. In contrast, design variables found by FA and CS always lead to maximum STHX efficiency. Also computational requirements of CS method are significantly less than FA method. As per optimization results, maximum efficiency (83.8%) can be achieved using several design configurations. However, these designs are bearing different dollar costs. Also it is found that the behavior of the majority of decision variables remains consistent in different runs of the FA and CS optimization processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a layered encoding cascade evolutionary approach to solve a 0/1 knapsack optimization problem. A layered encoding structure is proposed and developed based on the schema theorem and the concepts of cascade correlation and multi-population evolutionary algorithms. Genetic algorithm (GA) and particle swarm optimization (PSO) are combined with the proposed layered encoding structure to form a generic optimization model denoted as LGAPSO. In order to enhance the finding of both local and global optimum in the evolutionary search, the model adopts hill climbing evaluation criteria, feature of strength Pareto evolutionary approach (SPEA) as well as nondominated spread lengthen criteria. Four different sizes benchmark knapsack problems are studied using the proposed LGAPSO model. The performance of LGAPSO is compared to that of the ordinary multi-objective optimizers such as VEGA, NSGA, NPGA and SPEA. The proposed LGAPSO model is shown to be efficient in improving the search of knapsack’s optimum, capable of gaining better Pareto trade-off front.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stochastic search techniques such as evolutionary algorithms (EA) are known to be better explorer of search space as compared to conventional techniques including deterministic methods. However, in the era of big data like most other search methods and learning algorithms, suitability of evolutionary algorithms is naturally questioned. Big data pose new computational challenges including very high dimensionality and sparseness of data. Evolutionary algorithms' superior exploration skills should make them promising candidates for handling optimization problems involving big data. High dimensional problems introduce added complexity to the search space. However, EAs need to be enhanced to ensure that majority of the potential winner solutions gets the chance to survive and mature. In this paper we present an evolutionary algorithm with enhanced ability to deal with the problems of high dimensionality and sparseness of data. In addition to an informed exploration of the solution space, this technique balances exploration and exploitation using a hierarchical multi-population approach. The proposed model uses informed genetic operators to introduce diversity by expanding the scope of search process at the expense of redundant less promising members of the population. Next phase of the algorithm attempts to deal with the problem of high dimensionality by ensuring broader and more exhaustive search and preventing premature death of potential solutions. To achieve this, in addition to the above exploration controlling mechanism, a multi-tier hierarchical architecture is employed, where, in separate layers, the less fit isolated individuals evolve in dynamic sub-populations that coexist alongside the original or main population. Evaluation of the proposed technique on well known benchmark problems ascertains its superior performance. The algorithm has also been successfully applied to a real world problem of financial portfolio management. Although the proposed method cannot be considered big data-ready, it is certainly a move in the right direction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Evolutionary algorithms (EAs) have recently been suggested as candidate for solving big data optimisation problems that involve very large number of variables and need to be analysed in a short period of time. However, EAs face scalability issue when dealing with big data problems. Moreover, the performance of EAs critically hinges on the utilised parameter values and operator types, thus it is impossible to design a single EA that can outperform all other on every problem instances. To address these challenges, we propose a heterogeneous framework that integrates a cooperative co-evolution method with various types of memetic algorithms. We use the cooperative co-evolution method to split the big problem into sub-problems in order to increase the efficiency of the solving process. The subproblems are then solved using various heterogeneous memetic algorithms. The proposed heterogeneous framework adaptively assigns, for each solution, different operators, parameter values and local search algorithm to efficiently explore and exploit the search space of the given problem instance. The performance of the proposed algorithm is assessed using the Big Data 2015 competition benchmark problems that contain data with and without noise. Experimental results demonstrate that the proposed algorithm, with the cooperative co-evolution method, performs better than without cooperative co-evolution method. Furthermore, it obtained very competitive results for all tested instances, if not better, when compared to other algorithms using a lower computational times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This chapter presents an introduction to computational intelligence (CI) paradigms. A number of CI definitions are first presented to provide a general concept of this new, innovative computing field. The main constituents of CI, which include artificial neural networks, fuzzy systems, and evolutionary algorithms, are explained. In addition, different hybrid CI models arisen from synergy of neural, fuzzy, and evolutionary computational paradigms are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computational Intelligence (CI) models comprise robust computing methodologies with a high level of machine learning quotient. CI models, in general, are useful for designing computerized intelligent systems/machines that possess useful characteristics mimicking human behaviors and capabilities in solving complex tasks, e.g., learning, adaptation, and evolution. Examples of some popular CI models include fuzzy systems, artificial neural networks, evolutionary algorithms, multi-agent systems, decision trees, rough set theory, knowledge-based systems, and hybrid of these models. This special issue highlights how different computational intelligence models, coupled with other complementary techniques, can be used to handle problems encountered in image processing and information reasoning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of grid computing is to produce a virtual supercomputer by using free resources available through widespread networks such as the Internet. This resource distribution, changes in resource availability, and an unreliable communication infrastructure pose a major challenge for efficient resource allocation. Because of the geographical spread of resources and their distributed management, grid scheduling is considered to be a NP-complete problem. It has been shown that evolutionary algorithms offer good performance for grid scheduling. This article uses a new evaluation (distributed) algorithm inspired by the effect of leaders in social groups, the group leaders' optimization algorithm (GLOA), to solve the problem of scheduling independent tasks in a grid computing system. Simulation results comparing GLOA with several other evaluation algorithms show that GLOA produces shorter makespans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A soft computing framework to classify and optimize text-based information extracted from customers' product reviews is proposed in this paper. The soft computing framework performs classification and optimization in two stages. Given a set of keywords extracted from unstructured text-based product reviews, a Support Vector Machine (SVM) is used to classify the reviews into two categories (positive and negative reviews) in the first stage. An ensemble of evolutionary algorithms is deployed to perform optimization in the second stage. Specifically, the Modified micro Genetic Algorithm (MmGA) optimizer is applied to maximize classification accuracy and minimize the number of keywords used in classification. Two Amazon product reviews databases are employed to evaluate the effectiveness of the SVM classifier and the ensemble of MmGA optimizers in classification and optimization of product related keywords. The results are analyzed and compared with those published in the literature. The outputs potentially serve as a list of impression words that contains useful information from the customers' viewpoints. These impression words can be further leveraged for product design and improvement activities in accordance with the Kansei engineering methodology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Finite Element (FE) model updating has been attracting research attentions in structural engineering fields for over 20 years. Its immense importance to the design, construction and maintenance of civil and mechanical structures has been highly recognised. However, many sources of uncertainties may affect the updating results. These uncertainties may be caused by FE modelling errors, measurement noises, signal processing techniques, and so on. Therefore, research efforts on model updating have been focusing on tackling with uncertainties for a long time. Recently, a new type of evolutionary algorithms has been developed to address uncertainty problems, known as Estimation of Distribution Algorithms (EDAs). EDAs are evolutionary algorithms based on estimation and sampling from probabilistic models and able to overcome some of the drawbacks exhibited by traditional genetic algorithms (GAs). In this paper, a numerical steel simple beam is constructed in commercial software ANSYS. The various damage scenarios are simulated and EDAs are employed to identify damages via FE model updating process. The results show that the performances of EDAs for model updating are efficient and reliable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this research, we propose a facial expression recognition system with a layered encoding cascade optimization model. Since generating an effective facial representation is a vital step to the success of facial emotion recognition, a modified Local Gabor Binary Pattern operator is first employed to derive a refined initial face representation and we then propose two evolutionary algorithms for feature optimization including (i) direct similarity and (ii) Pareto-based feature selection, under the layered cascade model. The direct similarity feature selection considers characteristics within the same emotion category that give the minimum within-class variation while the Pareto-based feature optimization focuses on features that best represent each expression category and at the same time provide the most distinctions to other expressions. Both a neural network and an ensemble classifier with weighted majority vote are implemented for the recognition of seven expressions based on the selected optimized features. The ensemble model also automatically updates itself with the most recent concepts in the data. Evaluated with the Cohn-Kanade database, our system achieves the best accuracies when the ensemble classifier is applied, and outperforms other research reported in the literature with 96.8% for direct similarity based optimization and 97.4% for the Pareto-based feature selection. Cross-database evaluation with frontal images from the MMI database has also been conducted to further prove system efficiency where it achieves 97.5% for Pareto-based approach and 90.7% for direct similarity-based feature selection and outperforms related research for MMI. When evaluated with 90° side-view images extracted from the videos of the MMI database, the system achieves superior performances with >80% accuracies for both optimization algorithms. Experiments with other weighting and meta-learning combination methods for the construction of ensembles are also explored with our proposed ensemble showing great adpativity to new test data stream for cross-database evaluation. In future work, we aim to incorporate other filtering techniques and evolutionary algorithms into the optimization models to further enhance the recognition performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There exist multiple objectives in engineering management such as minimum cost and maximum service capacity. Although solution methods of multiobjective optimization problems have undergone continual development over the past several decades, the methods available to date are not particularly robust, and none of them performs well on the broad classes. Because genetic algorithms work with a population of points, they can capture a number of solutions simultaneously, and easily incorporate the concept of Pareto optimal set in their optimization process. In this paper, a genetic algorithm is modified to deal with the rehabilitation planning of bridge decks at a network level by minimizing the rehabilitation cost and deterioration degree simultaneously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generally multiple objectives exist in transportation infrastructure management, such as minimum cost and maximum service capacity. Although solution methoak of multiobjective optimization problems have undergone continual development over the part several decades, the methods available to date are not particularly robust, and none of them perform well on the broad classes. Because genetic algorithms work with apopulation ofpoints, they can capture a number of solutions simultaneously, and easily incorporate the concept of a Pareto optimal set in their optimization process. In this paper, a genetic algorithm is modified to deal with an empirical application for the rehabilitation planning of bridge decks, at a network level, by minimizing the rehabilitation cost and deterioration degree simultaneously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolving artificial neural networks has attracted much attention among researchers recently, especially in the fields where plenty of data exist but explanatory theories and models are lacking or based upon too many simplifying assumptions. Financial time series forecasting is one of them. A hybrid model is used to forecast the hourly electricity price from the California Power Exchange. A collaborative approach is adopted to combine ANN and evolutionary algorithm. The main contributions of this thesis include: Investigated the effect of changing values of several important parameters on the performance of the model, and selected the best combination of these parameters; good forecasting results have been obtained with the implemented hybrid model when the best combination of parameters is used. The lowest MAPE through a single run is 5. 28134%. And the lowest averaged MAPE over 10 runs is 6.088%, over 30 runs is 6.786%; through the investigation of the parameter period, it is found that by including future values of the homogenous moments of the instant being forecasted into the input vector, forecasting accuracy is greatly enhanced. A comparison of results with other works reported in the literature shows that the proposed model gives superior performance on the same data set.