6 resultados para Hybrid ANFIS-GA

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient energy management in hybrid vehicles is the key for reducing fuel consumption and emissions. To capitalize on the benefits of using PHEVs (Plug-in Hybrid Electric Vehicles), an intelligent energy management system is developed and evaluated in this paper. Models of vehicle engine, air conditioning, powertrain, and hybrid electric drive system are first developed. The effect of road parameters such as bend direction and road slope angle as well as environmental factors such as wind (direction and speed) and thermal conditions are also modeled. Due to the nonlinear and complex nature of the interactions between PHEV-Environment-Driver components, a soft computing based intelligent management system is developed using three fuzzy logic controllers. The crucial fuzzy engine controller within the intelligent energy management system is made adaptive by using a hybrid multi-layer adaptive neuro-fuzzy inference system with genetic algorithm optimization. For adaptive learning, a number of datasets were created for different road conditions and a hybrid learning algorithm based on the least squared error estimate using the gradient descent method was proposed. The proposed adaptive intelligent energy management system can learn while it is running and makes proper adjustments during its operation. It is shown that the proposed intelligent energy management system is improving the performance of other existing systems. © 2014 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A condition monitoring system for induction motors using a hybrid Fuzzy Min-Max (FMM) neural network and Genetic Algorithm (GA) is presented in this paper. Two types of experiments, one from the finite element method and another from real laboratory tests of broken rotor bars in an induction motor are conducted. The induction motor with broken rotor bars is operated under different load conditions. FMM is first used for learning and distinguishing between a healthy motor and one with broken rotor bars. The GA is then utilized for extracting fuzzy if-then rules using the don’t care approach in minimizing the number of rules. The results clearly demonstrate the effectiveness of the hybrid FMM-GA model in condition monitoring of broken rotor bars in induction motors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An increasingly popular and promising way for complex disease diagnosis is to employ artificial neural networks (ANN). Single nucleotide polymorphisms (SNP) data from individuals is used as the inputs of ANN to find out specific SNP patterns related to certain disease. Due to the large number of SNPs, it is crucial to select optimal SNP subset and their combinations so that the inputs of ANN can be reduced. With this observation in mind, a hybrid approach - a combination of genetic algorithms (GA) and ANN (called GANN) is used to automatically determine optimal SNP set and optimize the structure of ANN. The proposed GANN algorithm is evaluated by using both a synthetic dataset and a real SNP dataset of a complex disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short Term Load Forecasting (STLF) is very important from the power systems grid operation point of view. STLF involves forecasting load demand in a short term time frame. The short term time frame may consist of half hourly prediction up to weekly prediction. Accurate forecasting would benefit the utility in terms of reliability and stability of the grid ensuring adequate supply is present to meet with the load demand. Apart from that it would also affect the financial performance of the utility company. An accurate forecast would result in better savings while maintaining the security of the grid. This paper outlines the STLF using a novel hybrid online learning neural network, known as the Gaussian Regression (GR). This new hybrid neural network is a combination of two existing online learning neural networks which are the Gaussian Adaptive Resonance Theory (GA) and the Generalized Regression Neural Network (GRNN). Both GA and GRNN implemented online learning, but each of them suffers from limitation. Originally GA is used for unsupervised clustering by compressing the training samples into several categories. A supervised version of GA is available, namely Gaussian ARTMAP (GAM). However, the GAM is still not capable on solving regression problem. On the other hand, GRNN is designed for solving real value estimation (regression) problem, but the learning process would involve of memorizing all training samples, hence high computational cost. The hybrid GR is considered an enhanced version of GRNN with compression ability while still maintains online learning properties. Simulation results show that GR has comparable prediction accuracy and has less prototype as compared to the original GRNN as well as the Support Vector Regression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traffic signal controlling is one of the solutions to reduce the traffic congestion in cities. To set appropriate green times for traffic signal lights, we have applied Adaptive Neuro-Fuzzy Inference System (ANFIS) method in traffic signal controllers. ANFIS traffic signal controller is used for controlling traffic congestion of a single intersection with the purpose of minimizing travel delay time. The ANFIS traffic controller is an intelligent controller that learns to set an appropriate green time for each phase of traffic signal lights at the start of the phase and based on the traffic information. The controller uses genetic algorithm to tune ANFIS parameters during learning time. The results of the experiments show higher performance of the ANFIS traffic signal controller compared to three other traffic controllers that are developed as benchmarks. One of the benchmarks is GA-FLC (Araghi et al., 2014), next one is a fixed-FLC, and a fixed-time controller with three different values for green phase. Results show the higher performance of ANFIS controller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A two-stage hybrid model for data classification and rule extraction is proposed. The first stage uses a Fuzzy ARTMAP (FAM) classifier with Q-learning (known as QFAM) for incremental learning of data samples, while the second stage uses a Genetic Algorithm (GA) for rule extraction from QFAM. Given a new data sample, the resulting hybrid model, known as QFAM-GA, is able to provide prediction pertaining to the target class of the data sample as well as to give a fuzzy if-then rule to explain the prediction. To reduce the network complexity, a pruning scheme using Q-values is applied to reduce the number of prototypes generated by QFAM. A 'don't care' technique is employed to minimize the number of input features using the GA. A number of benchmark problems are used to evaluate the effectiveness of QFAM-GA in terms of test accuracy, noise tolerance, model complexity (number of rules and total rule length). The results are comparable, if not better, than many other models reported in the literature. The main significance of this research is a usable and useful intelligent model (i.e., QFAM-GA) for data classification in noisy conditions with the capability of yielding a set of explanatory rules with minimum antecedents. In addition, QFAM-GA is able to maximize accuracy and minimize model complexity simultaneously. The empirical outcome positively demonstrate the potential impact of QFAM-GA in the practical environment, i.e., providing an accurate prediction with a concise justification pertaining to the prediction to the domain users, therefore allowing domain users to adopt QFAM-GA as a useful decision support tool in assisting their decision-making processes.