4 resultados para Host biology

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

1We censused ectoparasite populations of adult and nestling swifts over the course of the host's breeding season. Nearly all of the birds were infested with chewing lice and two-thirds of the nests were infested with louse flies. Feather mites were observed but not quantified.2Lice and louse flies both showed aggregated distributions among hosts. Louse eggs, hatched lice and adult louse flies had negative binomial distributions, whereas the aggregated distribution of louse fly pupae was not adequately described by negative binomial or Poisson models.3Transmission of lice from parents to offspring was documented. A comparison of the age structure of lice on parents and offspring indicated that most transmission was by nymphal lice.4Host reproductive success and survival appeared to be independent of the number of lice or louse flies. Neither parasite correlated with the number, body mass, or date of fledging of young birds, nor with the overwinter survival of adults. We caution, however, that experimental manipulations of parasite load are required for a definitive test of the impact of ectoparasites on evolutionary fitness components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infection-induced changes in a host’s thermal physiology can represent (1) a generalized host response to infection, (2) a pathological side-effect of infection, or (3), provided the parasite’s development is temperature-dependent, a subtle case of host manipulation. This study investigates parasite-induced changes in the thermal biology of a first intermediate host infected by two castrating trematodes (genera Maritrema and Philophthalmus) using laboratory experiments and Weld surveys. The heat tolerance and temperatures selected by the snail, Zeacumantus subcarinatus, displayed alterations upon infection that differed between the two trematodes. Upon heating, snails infected by Maritrema sustained activity for longer durations than uninfected snails, followed by a more rapid recovery, and selected higher temperatures in a thermal gradient. These snails were also relatively abundant in high shore localities in the summer only, corresponding with seasonal elevated microhabitat temperatures. By contrast, Philophthalmus infected snails fell rapidly into a coma upon heating and did not display altered thermal preferences. The respective heat tolerance of each trematode corresponded with the thermal responses induced in the snail: Maritrema survived exposure to 40°C, while Philophthalmus was less heat tolerant. Although both trematodes infect the same tissues, Philophthalmus leads to a reduction in the host’s thermal tolerance, a response consistent with a pathological side effect. By contrast, Maritrema induces heat tolerance in the snail and withstood exposure to high heat. As the developmental rate and infectivity of Maritrema increase with temperature up to 25°C, one adaptive explanation for our findings is that Maritrema manipulates the snail’s thermal responses to exploit warm microhabitats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human impacts through habitat destruction, introduction of invasive species and climate change are increasing the number of species threatened with extinction. Decreases in population size simultaneously lead to reductions in genetic diversity, ultimately reducing the ability of populations to adapt to a changing environment. In this way, loss of genetic polymorphism is linked with extinction risk. Recent advances in sequencing technologies mean that obtaining measures of genetic diversity at functionally important genes is within reach for conservation programs. A key region of the genome that should be targeted for population genetic studies is the Major Histocompatibility Complex (MHC). MHC genes, found in all jawed vertebrates, are the most polymorphic genes in vertebrate genomes. They play key roles in immune function via immune-recognition and -surveillance and host-parasite interaction. Therefore, measuring levels of polymorphism at these genes can provide indirect measures of the immunological fitness of populations. The MHC has also been linked with mate-choice and pregnancy outcomes and has application for improving mating success in captive breeding programs. The recent discovery that genetic diversity at MHC genes may protect against the spread of contagious cancers provides an added impetus for managing and protecting MHC diversity in wild populations. Here we review the field and focus on the successful applications of MHC-typing for conservation management. We emphasize the importance of using MHC markers when planning and executing wildlife rescue and conservation programs but stress that this should not be done to the detriment of genome-wide diversity.