72 resultados para Hormonal plasticity

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most animals conduct daily activities exclusively either during the day or at night. Here, hormones such as melatonin and corticosterone, greatly influence the synchronization or regulation of physiological and behavioral cycles needed for daily activity. How then do species that exhibit more flexible daily activity patterns, responses to ecological, environmental or life-history processes, regulate daily hormone profiles important to daily performance? This study examined the consequences of (1) nocturnal activity on diel profiles of melatonin and corticosterone and (2) the effects of experimentally increased acute melatonin levels on physiological and metabolic performance in the cane toad (Rhinella marinus). Unlike inactive captive toads that had a distinct nocturnal melatonin profile, nocturnally active toads sampled under field and captive conditions, exhibited decreased nocturnal melatonin profiles with no evidence for any phase shift. Nocturnal corticosterone levels were significantly higher in field active toads than captive toads. In toads with experimentally increased melatonin levels, plasma lactate and glucose responses following recovery post exercise were significantly different from control toads. However, exogenously increased melatonin did not affect resting metabolism in toads. These results suggest that toads could adjust daily hormone profiles to match nocturnal activity requirements, thereby avoiding performance costs induced by high nocturnal melatonin levels. The ability of toads to exhibit plasticity in daily hormone cycles, could have broad implications for how they and other animals utilize behavioral flexibility to optimize daily activities in response to natural and increasingly human mediated environmental variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermomechanical processing simulations were performed using a hot-torsion machine, in order to develop a comprehensive understanding of the effect of severe deformation in the recrystallized and nonrecrystallized austenite regions on the microstructural evolution and mechanical properties of the 0.2 wt pct C-1.55 wt pct Mn-1.5 wt pct Si transformation-induced plasticity (TRIP) steel. The deformation schedule affected all constituents (polygonal ferrite, bainite in different morphologies, retained austenite, and martensite) of the multiphased TRIP steel microstructure. The complex relationships between the volume fraction of the retained austenite, the morphology and distribution of all phases present in the microstructure, and the mechanical properties of TRIP steel were revealed. The bainite morphology had a more pronounced effect on the mechanical behavior than the refinement of the microstructure. The improvement of the mechanical properties of TRIP steel was achieved by variation of the volume fraction of the retained austenite rather than the overall refinement of the microstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two Fe-0.2C-1.55Mn-1.5Si (in wt pet) steels, with and without the addition of 0.039Nb (in wt pet), were studied using laboratory rolling-mill simulations of controlled thermomechanical processing. The microstructures of all samples were characterized by optical metallography, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The microstructural behavior of phases under applied strain was studied using a heat-tinting technique. Despite the similarity in the microstructures of the two steels (equal amounts of polygonal ferrite, carbide-free bainite, and retained austenite), the mechanical properties were different. The mechanical properties of these transformation-induced-plasticity (TRIP) steels depended not only on the individual behavior of all these phases, but also on the interaction between the phases during deformation. The polygonal ferrite and bainite of the C-Mn-Si steel contributed to the elongation more than these phases in the C-Mn-Si-Nb-steel. The stability of retained austenite depends on its location within the microstructure, the morphology of the bainite, and its interaction with other phases during straining. Granular bainite was the bainite morphology that provided the optimum stability of the retained austenite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A case study of twenty-nine midwives and nine obstetricians working in a regional, public sector Australian hospital demonstrates the plasticity of professional boundaries within a post-welfare state. Driven by new discourses of globalisation, marketisation, managerialism and consumerism, professional boundaries in health care are being blurred, reordered and reconstituted. Government policies that call for a new interdisciplinarity between maternity professionals may be seen as responses to the above pressures. However, there remain considerable barriers to achieving collaborative models including conflicting interpretations of risk, of women's bodies and of childbirth; the veto power of decision-making retained by obstetricians; questions of professional accountability; and diversity over appropriate styles of micro-interaction. Collaboration demands a new egalitarianism to eclipse the old vertical system of obstetric dominance and this means that midwives need to create a distinctive professional specialty, or new object of knowledge. Midwives' skill in 'emotion management' could provide this speciality in addition to their rational-technical knowledge and thus elevate midwifery to an equivalent professional status with obstetrics but as yet neither obstetrics nor midwifery have realised its professionalising potential

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper deficiency during pregnancy results in early embryonic death and foetal structural abnormalities including skeletal, pulmonary and cardiovascular defects. During pregnancy, copper is transported from the maternal circulation to the foetus by mechanisms which have not been clearly elucidated. Two coppertransporting ATPases, Menkes (ATP7A; MNK) and Wilson (ATP7B; WND), are expressed in the placenta and both are involved in placental copper transport, as copper accumulates in the placenta in both Menkes and Wilson disease. The regulatory mechanisms of MNKand WNDand their exact role in the placenta are unknown. Using a differentiated polarized Jeg-3 cell culture model of placental trophoblasts, MNK and WND were shown to be expressed within these cells. Distinct roles forMNKandWND are suggested on the basis of their opposing responses to insulin. Insulin and oestrogen increased both MNK mRNA and protein levels, altered the localization of MNK towards the basolateral membrane in a copper-independent manner, and increased the transport of copper across this membrane. In contrast, levels of WND were decreased in response to insulin, and the protein was located in a tight perinuclear region, with a corresponding decrease in copper efflux across the apical membrane. These results are consistent with a model of copper transport in the placenta in which MNK delivers copper to the foetus and WND returns excess copper to the maternal circulation. Insulin and oestrogen stimulate copper transport to the foetus by increasing the expression of MNK and reducing the expression of WND. These data show for the first time that MNK and WND are differentially regulated by the hormones insulin and oestrogen in human placental cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of prestraining (PS) and bake hardening (BH) on the microstructures and mechanical properties has been studied in transformation-induced plasticity (TRIP) and dual-phase (DP) steels after intercritical annealing. The DP steel showed an increase in the yield strength and the appearance of the upper and lower yield points after a single BH treatment as compared with the as-received condition, whereas the mechanical properties of the TRIP steel remained unchanged. This difference appears to be because of the formation of plastic deformation zones with high dislocation density around the “as-quenched” martensite in the DP steel, which allowed carbon to pin these dislocations, which, in turn, increased the yield strength. It was found for both steels that the BH behavior depends on the dislocation rearrangement in ferrite with the formation of cell, microbands, and shear band structures after PS. The strain-induced transformation of retained austenite to martensite in the TRIP steel contributes to the formation of a complex dislocation structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ neutron diffraction and Elasto-Plastic Self-Consistent (EPSC) polycrystal modelling have been employed to investigate which deformation mechanisms are involved in the plasticity of extruded AZ31 Mg alloy during the tensile loading along the extrusion direction. On the basis of this study we were able to determine the relative activity of the slip and twinning deformation modes. By tuning the parameters of the EPSC model (i.e. the critical resolved shear strengths and hardening parameters), excellent agreement with the experimental data has been achieved. It is shown that the strain in the crystallographic ⟨c ⟩direction is accommodated mainly by ⟨c + a ⟩ dislocation slip on second-order pyramidal planes. The results further indicate that either slip of ⟨a ⟩dislocations occurs on {10.1} pyramidal planes or cross-slip from basal and prismatic planes takes place.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corticosterone exposure during prenatal development as a result of maternal upregulation of circulating hormone levels has been shown to have effects on offspring development in mammals. Corticosterone has also been documented in egg yolk in oviparous vertebrates, but the extent to which this influences phenotypic development is less studied. We show that maternal corticosterone is transferred to egg yolk in an oviparous lizard (the mallee dragon, Ctenophorus fordi Storr), with significant variation among clutches in hormone levels. Experimental elevation of yolk corticosterone did not affect hatching success, incubation period or offspring sex ratio. However, corticosterone did have a sex-specific effect on skeletal growth during embryonic development. Male embryos exposed to relatively high levels of corticosterone were smaller on average than control males at hatching whereas females from hormone-treated eggs were larger on average than control females. The data thus suggest that males are not just more sensitive to the detrimental effects of corticosterone but rather that the sexes may have opposite responses to corticosterone during development. Positive selection on body size at hatching for both sexes in this species further suggests that increased corticosterone in egg yolk may have sex-specific fitness consequences, with potential implications for sex allocation and the evolution of hormone-mediated maternal effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main aims of steel research for the automotive industry is to develop materials with the optimum combination of relevant properties, cost and productivity. The introduction of new TRansformation Induced Plasticity steels has been driven by the requirements to increase the ductility without compromising the strength. The main phenomenon responsible for the unique mechanical properties in these steels has been proposed to be the formation of multiphase structure, which can contribute to an increase in elongation during straining. The thesis studied the effect of the different alloying additions on the structure-property relationship in the TRIP steels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Details 13 novel hormone compounds, designed and synthesised for the purpose of aiding the detection and treatment of breast and prostate cancers. Cellular and electromechanical studies of 3 of these synthesised hormones indicate a potential for human application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium alloys show promise for application in formed components where weight saving is an advantage. In most instances forming is carried out at elevated temperatures. However, there are considerable gains to be had if forming can be carried out under ambient conditions. The present article outlines some of the difficulties that lie in the way of achieving this objective. The underlying metallurgical characteristics of the issues are considered and means for overcoming them are discussed. It is concluded that a combination of microstructure and texture control remains a promising strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bake-hardening (BH) behavior of TRansformation Induced Plasticity (TRIP) and Dual-Phase (DP) steels after intercritical annealing (IA) has been studied using transmission electron microscopy, X-ray diffraction and three dimensional atom probe tomography. It was found for the DP steel that carbon can segregate to dislocations in the ferrite plastic deformation zones where there is a high dislocation density around the "asquenched" martensite. The carbon pinning of these dislocations, in turn, increases the yield strength after aging. It was shown that bake-hardening also leads to rearrangement of carbon in the martensite leading to the formation of rod-like low temperature carbides in the DP steel. Segregation of carbon to microtwins in retained austenite of the TRIP steel was also evident. These factors, in combination with the dislocation rearrangement in ferrite through the formation of cells and microbands in the TRIP steel after pre-straining, lead to the different bake-hardening responses of the two steels.