7 resultados para Horizontal surface phytoplankton distribution

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

For various applications it is necessary to know not only global solar radiation values, but also the diffuse and beam components. Because often only global values are available, there have been several models developed to establish correlations between the diffuse fraction and various predictors. These typically include the clearness index, but also may include the solar angle, temperature and humidity. The clearness index is the proportion of extraterrestrial radiation reaching a location, where the extraterrestrial value used in the calculation varies with latitude and time of year. These correlations have been developed using data principally from latitudes greater than 40°, often using only data from a few locations and with few exceptions have not used solar altitude as a predictor. Generally the data consist of hourly integrated values. A model has been developed using hourly data from a weather station set up at Deakin University, Geelong. Another model has also been developed for 15 minute data values in order to ascertain if the smoothing generated by using hourly data makes a significant difference to overall results. The construction of such models has been investigated, enabling an extension to the research, inclusive of other stations, to be performed systematically. A final investigation was carried out, using data from other Australian locations, to explain some of the considerable scatter by adding apparent solar time as a predictor, which proved to be significantly better than solar altitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Freely flying bees were filmed as they landed on a flat, horizontal surface, to investigate the underlying visuomotor control strategies. The results reveal that (1) landing bees approach the surface at a relatively shallow descent angle; (2) they tend to hold the angular velocity of the image of the surface constant as they approach it; and (3) the instantaneous speed of descent is proportional to the instantaneous forward speed. These characteristics reflect a surprisingly simple and effective strategy for achieving a smooth landing, by which the forward and descent speeds are automatically reduced as the surface is approached and are both close to zero at touchdown. No explicit knowledge of flight speed or height above the ground is necessary. A model of the control scheme is developed and its predictions are verified. It is also shown that, during landing, the bee decelerates continuously and in such a way as to keep the projected time to touchdown constant as the surface is approached. The feasibility of this landing strategy is demonstrated by implementation in a robotic gantry equipped with vision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We collaborate with environmental scientists to study the hydrodynamics and water quality in an urban district, where the surface wind distribution is an essential input but undergoes high spatial and temporal variations due to the complex urban landform created by surrounding buildings. In this work, we study an optimal sensor placement scheme to measure the wind distribution over a large urban reservoir with a limited number of wind sensors. Unlike existing sensor placement solutions that assume Gaussian process of target phenomena, this study measures the wind which inherently exhibits strong non-Gaussian yearly distribution. By leveraging the local monsoon characteristics of wind, we segment a year into different monsoon seasons which follow a unique distribution respectively. We also use computational fluid dynamics to learn the spatial correlation of wind in the presence of surrounding buildings. The output of sensor placement is a set of the most informative locations to deploy the wind sensors, based on the readings of which we can accurately predict the wind over the entire reservoir surface in real time. 10 wind sensors are finally deployed around or on the water surface of an urban reservoir. The in-field measurement results of more than 3 months suggest that the proposed sensor placement and spatial prediction approach provides accurate wind measurement which outperforms the state-of-the-art Gaussian model based or interpolation based approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 A new method has been developed to measure metal corrosion rates and their distribution under cathodic protection (CP). This method uses an electrochemically integrated multi-electrode array to take local measurements of cathodic current density while simulating a continuous metallic surface. The distribution of cathodic current densities obtained under CP was analyzed to estimate the anodic current component at each electrode of the array. Corrosion patterns determined by this new method have shown good correlation with visual inspection and surface profilometry of the multi-electrode array surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the water quality in an urban district, where the surface wind distribution is an essential input but undergoes high spatial and temporal variations due to the impact of surrounding buildings. In this work, we develop an optimal sensor placement scheme to measure the wind distribution over a large urban reservoir using a limited number of wind sensors. Unlike existing solutions that assume Gaussian process of target phenomena, this study measures the wind that inherently exhibits strong non-Gaussian yearly distribution. By leveraging the local monsoon characteristics of wind, we segment a year into different monsoon seasons that follow a unique distribution respectively. We also use computational fluid dynamics to learn the spatial correlation of wind. The output of sensor placement is a set of the most informative locations to deploy the wind sensors, based on the readings of which we can accurately predict the wind over the entire reservoir in real time. Ten wind sensors are deployed. The in-field measurement results of more than 3 months suggest that the proposed sensor placement and spatial prediction scheme provides accurate wind measurement that outperforms the state-of-the-art Gaussian model based on interpolation-based approaches.