21 resultados para Homologous recombination

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

During meiosis, combinatorial associations of genetic traits arise from homologous recombination between parental chromosomes. Histone H3 lysine 4 trimethylation marks meiotic recombination hotspots in yeast and mammals, but how this ubiquitous chromatin modification relates to the initiation of double-strand breaks (DSBs) dependent on Spo11 remains unknown. Here, we show that the tethering of a PHD-containing protein, Spp1 (a component of the COMPASS complex), to recombinationally cold regions is sufficient to induce DSB formation. Furthermore, we found that Spp1 physically interacts with Mer2, a key protein of the differentiated chromosomal axis required for DSB formation. Thus, by interacting with H3K4me3 and Mer2, Spp1 promotes recruitment of potential meiotic DSB sites to the chromosomal axis, allowing Spo11 cleavage at nearby nucleosome-depleted regions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

HIV undergoes high rates of mutation and recombination during reverse transcription, but it is not known whether these events occur independently or are linked mechanistically. Here we used a system of silent marker mutations in HIV and a single round of infection in primary T lymphocytes combined with a high-throughput sequencing and mathematical modeling approach to directly estimate the viral recombination and mutation rates. From >7 million nucleotides (nt) of sequences from HIV infection, we observed 4,801 recombination events and 859 substitution mutations (≈1.51 and 0.12 events per 1,000 nt, respectively). We used experimental controls to account for PCR-induced and transfection-induced recombination and sequencing error. We found that the single-cycle virus-induced mutation rate is 4.6 × 10(-5) mutations per nt after correction. By sorting of our data into recombined and nonrecombined sequences, we found a significantly higher mutation rate in recombined regions (P = 0.003 by Fisher's exact test). We used a permutation approach to eliminate a number of potential confounding factors and confirm that mutation occurs around the site of recombination and is not simply colocated in the genome. By comparing mutation rates in recombined and nonrecombined regions, we found that recombination-associated mutations account for 15 to 20% of all mutations occurring during reverse transcription.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae RAD1 and human XPF genes encode a subunit of a nucleotide excision repair endonuclease that also is implicated in some forms of homologous recombination. An Arabidopsis thaliana gene (AtRAD1) encoding the orthologous plant protein has been identified recently. Here we report the isolation of three structurally distinct AtRAD1 cDNAs from A. thaliana leaf tissue RNA. One of the isolates (AtRAD1-1) corresponds to the cDNA previously shown to encode the full-length AtRad1 protein, whereas the other two (AtRAD1-2, AtRAD1-3) differ slightly in size due to variations at the 5′ end of exon 6 or the 3′ end of exon 7, respectively. The sequence differences argue that these cDNAs were probably templated by mRNAs generated via alternative splicing. Diagnostic polymerase chain reaction pointed to the presence of the AtRAD1-1 and AtRAD1-2 but not AtRAD1-3 transcripts in bud and root tissue, and to a fourth transcript (AtRAD1-4), having both alterations identified in AtRAD1-2 and AtRAD1-3, in root tissue. However, the low frequency of detection of AtRAD1-3 and AtRAD1-4 makes the significance of these tissue-specific patterns unclear. The predicted AtRad1-2, AtRad1-3 and AtRad1-4 proteins lack part of the region likely required for endonuclease complex formation. Expression of AtRAD1-2 and AtRAD1-3 in a yeast rad1 mutant did not complement the sensitivity to ultraviolet radiation or the recombination defect associated with the rad1 mutation. These results suggest that alternative splicing may modulate the levels of functional AtRad1 protein.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Active efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. To understand these efflux mechanisms in Mycobacterium tuberculosis, we generated knockout (KO) mutants of four efflux pumps of the pathogen belonging to different classes. We measured the MICs and kill values of two different compound classes on the wild type (WT) and the efflux pump (EP) KO mutants in the presence and absence of the efflux inhibitors verapamil and L-phenylalanyl-L-arginyl-β-naphthylamide (PAβN). Among the pumps studied, the efflux pumps belonging to the ABC (ATP-binding cassette) class, encoded by Rv1218c, and the SMR (small multidrug resistance) class, encoded by Rv3065, appear to play important roles in mediating the efflux of different chemical classes and antibiotics. Efflux pumps encoded by Rv0849 and Rv1258c also mediate the efflux of these compounds, but to a lesser extent. Increased killing is observed in WT M. tuberculosis cells by these compounds in the presence of either verapamil or PAβN. The efflux pump KO mutants were more susceptible to these compounds in the presence of efflux inhibitors. We have shown that these four efflux pumps of M. tuberculosis play a vital role in mediating efflux of different chemical scaffolds. Inhibitors of one or several of these efflux pumps could have a significant impact in the treatment of tuberculosis. The identification and characterization of Rv0849, a new efflux pump belonging to the MFS (major facilitator superfamily) class, are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A range of homologous (trout ANP, trout CNP, trout VNP) and heterologous (eel ANP, eel ANP-NH2, rat ANP, porcine CNP) NPs were tested for their effect on guanylyl cyclase in gill and kidney membrane preparations from freshwater and seawater-acclimated rainbow trout and Atlantic salmon. All NPs stimulated guanylyl cyclase at 1 µmol l-1in all preparations. ANP was the most potent stimulator of kidney guanylyl cyclase and CNP the most potent stimulator of guanylyl cyclase in gills. Some differences were apparent between the potencies of homologous and heterologous peptides at 1 µmol l-1: tANP was more potent than rANP in the SW trout kidney and tCNP was more potent than pCNP in FW salmon tissues. While eANP was more potent than tANP in trout gills, it was less potent than tANP in FW salmon gills. However, there was no significant difference between the potencies of eANP and eANP-NH2 in trout or salmon gills. Salinity did not affect guanylyl cyclase activity with the exception that trout ANP at 1 µmol l-1was more potent in SW trout kidneys than in FW trout kidneys. These results suggest a predomination of NPR-A in the kidney and NPR-B in the gill. It appears that salmonid NPR-A and NPR-B are relatively promiscuous in their ligand affinity, with few differences in the potencies of trout and mammalian NPs and only small differences in cGMP production where these differences do occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contralateral transfer of strength following unilateral strength training (ULS) is thought to be due to changes within the nervous system. Using transcranial magnetic stimulation (TMS) we compared corticospinal responses following ULS of the right biceps brachii (BB) projecting to the untrained left BB. Motor evoked potentials (MEPs) were recorded from both BB of 23 individuals pre and post 4 weeks heavy load (80% of 1RM) ULS of right BB. TMS was delivered at intensities below active motor threshold (AMT) to saturation of the MEP (MEPmax). ULS resulted in a 28% increase in 1RM right BB strength, resulting in a 19.2% increase in contralateral strength of the left BB (p = .0001). There was a significant increase in MEP amplitude of 30.3% (p = .03), 33% (p = .05), and 26.5% (p = .01) at AMT, 20% above AMT and MEPmax respectively. No significant differences in silent period were seen at AMT, 20% above AMT or MEPmax. This study has demonstrated increased corticospinal excitability projecting to the untrained arm following heavy load ULS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retroviral recombination is thought to play an important role in the generation of immune escape and multiple drug resistance by shuffling pre-existing mutations in the viral population. Current estimates of HIV-1 recombination rates are derived from measurements within reporter gene sequences or genetically divergent HIV sequences. These measurements do not mimic the recombination occurring in vivo, between closely related genomes. Additionally, the methods used to measure recombination make a variety of assumptions about the underlying process, and often fail to account adequately for issues such as co-infection of cells or the possibility of multiple template switches between recombination sites. We have developed a HIV-1 marker system by making a small number of codon modifications in gag which allow recombination to be measured over various lengths between closely related viral genomes. We have developed statistical tools to measure recombination rates that can compensate for the possibility of multiple template switches. Our results show that when multiple template switches are ignored the error is substantial, particularly when recombination rates are high, or the genomic distance is large. We demonstrate that this system is applicable to other studies to accurately measure the recombination rate and show that recombination does not occur randomly within the HIV genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retroviral recombination drives viral diversity and facilitates the emergence of immune escape and drug resistant mutants that contribute to disease progression. Current estimates of retroviral recombination rates are based on indirect measurements that do not take into account the effects of multiple recombination events. In the presence of multiple template switches, any even number of template switches result in no observed recombination and any odd number is detected as a single recombination event. We demonstrate that ignoring multiple recombination events consistently underestimates the true recombination rate, especially over large genetic distances and high rates of recombination. Here, we present a novel approach to measure rates of recombination across different gene segments regardless of the effects of genetic distance and the overall rate of recombination. We apply these tools to a novel HIV-1 marker system, which mimics the recombination process between closely related genomes, analogous to those found within the quasispecies of an infected individual. We directly measure the recombination rate in gag, correcting for the effects of multiple template switches and background recombination. Furthermore, our analysis indicates that recombination rates are likely to vary across the viral genome. This system is applicable to other studies to accurately measure the recombination rate that is critical for the diversification of retroviruses.