4 resultados para Hematopoiesis model

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract In this paper, a generalized model of hematopoiesis with delays and impulses isconsidered. By employing the contraction mapping principle and a novel type of impulsivedelay inequality, we prove the existence of a unique positive almost periodic solution of themodel. It is also proved that, under the proposed conditions in this paper, the unique positivealmost periodic solution is globally exponentially attractive. A numerical example is givento illustrate the effectiveness of the obtained results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective : The Janus kinase 2 (JAK2) is important for embryonic primitive hematopoiesis. A gain-of-function JAK2 (JAK2V617F) mutation in human is pathogenetically linked to polycythemia vera (PV). In this study, we generated a zebrafish ortholog of human JAK2V617F (referred herewith jak2aV581F) by site-directed mutagenesis and examined its relevance as a model of human PV.

Materials and Methods : Zebrafish embryos at one-cell stage were injected with jak2aV581F mRNA (200pg/embryo). In some experiments, the embryos were treated with a specific JAK2 inhibitor, TG101209. The effects of jak2a stimulation on hematopoiesis, jak/stat signaling, and erythropoietin signaling were evaluated at 18-somites.

Results : Injection with jak2aV581F mRNA significantly increased erythropoiesis, as enumerated by flow cytometry based on gfp+ population in dissociated Tg(gata1:gfp) embryos. The response was reduced by stat5.1 morpholino coinjection (control: 4.37% ± 0.08%; jak2aV581F injected: 5.71% ± 0.07%, coinjecting jak2aV581F mRNA and stat5.1 morpholino: 4.66% ± 0.13%; p < 0.01). jak2aV581F mRNA also upregulated gata1 (1.83 ± 0.08 fold; p = 0.005), embryonic α-hemoglobin (1.61 ± 0.12 fold; p = 0.049), and β-hemoglobin gene expression (1.65 ± 0.13–fold; p = 0.026) and increased stat5 phosphorylation. These responses were also ameliorated by stat5.1 morpholino coinjection or treatment with a specific JAK2 inhibitor, TG101209. jak2aV581F mRNA significantly reduced erythropoietin gene (0.24 ± 0.03 fold; p = 0.006) and protein expression (control: 0.633 ± 0.11; jak2aV581F mRNA: 0.222 ± 0.07 mIU/mL; p = 0.019).

Conclusion : The zebrafish jak2aV581F model shared many features with human PV and might provide us with mechanistic insights of this disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromosomal translocations involving fusions of the human ETV6 (TEL1) gene occur frequently in hematologic malignancies. However, a detailed understanding of the normal function of ETV6 remains incomplete. This study has employed zebrafish as a relevant model to investigate the role of ETV6 during embryonic hematopoiesis. Zebrafish possessed a single conserved etv6 ortholog that was expressed from 12 hpf in the lateral plate mesoderm, and later in hematopoietic, vascular and other tissues. Morpholino-mediated gene knockdown of etv6 revealed the complex contribution of this gene toward embryonic hematopoiesis. During primitive hematopoiesis, etv6 knockdown resulted in reduced levels of progenitor cells, erythrocyte and macrophage populations, but increased numbers of incompletely differentiated heterophils. Definitive hematopoiesis was also perturbed, with etv6 knockdown leading to decreased erythrocytes and myeloid cells, but enhanced lymphopoiesis. This study suggests that ETV6 plays a broader and more complex role in early hematopoiesis than previously thought, impacting on the development of multiple lineages. © 2015 Ferrata Storti Foundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zebrafish is an established model for the study of vertebrate development, and is especially amenable for investigating hematopoiesis, where there is strong conservation of key lineages, genes, and developmental processes with humans. Over recent years, zebrafish has been increasingly utilized as a model for a range of human hematopoietic diseases, including malignancies. This review provides an overview of zebrafish hematopoiesis and describes its application as a model of leukemia and other hematopoietic disorders.