21 resultados para Helical magnets

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bis(3-endo-camphoryl)phosphinic acid (1) was prepared by the reaction of the lithium enolate of D-(+)-camphor and phosphorous trichloride followed by an oxidative work up. Compound 1 crystallizes from wet toluene as monohydrate 1·H2O, which was investigated by X-ray crystallography. Molecules of 1 are associated by strong hydrogen bonds giving rise to the formation of a supramolecular helix. The interior channel of the helix is filled by a one-dimensional (1D) string of water molecules that are also associated by hydrogen bonding. The 1D string adopts a twisted zigzag conformation. Although the hydrogen bond networks are not cross-linked both the screw of the helix and the twist of the 1D string of water molecules are left-handed (M) and controlled by the chiral camphoryl residues situated on the exterior of the helix. The overall supramolecular structure is strongly reminiscent of aquaporin-1, a significant membrane-channel protein responsible for the transport of water into the cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

μ-Conotoxin KIIIA (μ-KIIIA) blocks mammalian voltage-gated sodium channels (VGSCs) and is a potent analgesic following systemic administration in mice. Previous structure–activity studies of μ-KIIIA identified a helical pharmacophore for VGSC blockade. This suggested a route for designing truncated analogues of μ-KIIIA by incorporating the key residues into an α-helical scaffold. As (i, i+4) lactam bridges constitute a proven approach for stabilizing α-helices, we designed and synthesized six truncated analogues of μ-KIIIA containing single lactam bridges at various locations. The helicity of these lactam analogues was analyzed by NMR spectroscopy, and their activities were tested against mammalian VGSC subtypes NaV1.1 through 1.7. Two of the analogues, Ac-cyclo9/13[Asp9,Lys13]KIIIA7–14 and Ac-cyclo9/13[Lys9,Asp13]KIIIA7–14, displayed μM activity against VGSC subtypes NaV1.2 and NaV1.6; importantly, the subtype selectivity profile for these peptides matched that of μ-KIIIA. Our study highlights structure–activity relationships within these helical mimetics and provides a basis for the design of additional truncated peptides as potential analgesics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cone snail venoms are a rich source of peptides, many of which are potent and selective modulators of ion channels and receptors. Here we report the isolation and characterization of two novel conotoxins from the venom of Conus imperialis. These two toxins contain a novel cysteine framework, C-C-C-CC-C, which has not been found in other conotoxins described to date. We name it framework XXIII and designate the two toxins im23a and im23b; cDNAs of these toxins exhibit a novel signal peptide sequence, which defines a new K-superfamily. The disulfide connectivity of im23a has been mapped by chemical mapping of partially reduced intermediates and by NMR structure calculations, both of which establish a I-II, III-IV, V-VI pattern of disulfide bridges. This pattern was also confirmed by synthesis of im23a with orthogonal protection of individual cysteine residues. The solution structure of im23a reveals that im23a adopts a novel helical hairpin fold. A cluster of acidic residues on the surface of the molecule is able to bind calcium. The biological activity of the native and recombinant peptides was tested by injection into mice intracranially and intravenously to assess the effects on the central and peripheral nervous systems, respectively. Intracranial injection of im23a or im23b into mice induced excitatory symptoms; however, the biological target of these new toxins has yet to be identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

THIS STUDY INVESTIGATED THE teaching and learning approaches of three Victorian early childhood kindergarten teachers to science education, and how they used the Victorian Early Years Learning and Development Framework (VEYLDF) to support them in the development of science in their curriculum. A qualitative, collective case study was designed to investigate how the participants introduced and explored science in their curriculum through two face-to-face individual, semi-structured interviews, separated by a week during which they completed a reflective journal focusing on science in their curriculum. The findings revealed teachers’ own negative school experiences of science education and an overall lack of confidence in their current science knowledge impacts on science in their curriculum. Conversely the findings also revealed instances of science learning anddiscovery, as well as a desire by the early childhood teachers to enhance science education in their curriculum

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The new bulky silicon-containing ditin precursor p-(RCl2SnCH2SiMe2)2C6H4 (R = CH2SiMe3 (4)) has been synthesized and further reacted to form a unique double ladder {[p-(R(Cl)SnCH2SiMe2)2C6H4]O}4 (6). The two layers within 6 are twisted with respect to one another, resulting in a helical motif and a total absence of molecular symmetry so that there are eight chiral tin atoms within the system. The structure is compared to the double ladder {[m-(R(Cl)SnCH2CH2)2C6H4]O}4 (11), which was prepared from the less sterically demanding ditin precursor m-(RCl2SnCH2CH2)2C6H4 (10). The two layers within 11 are parallel, and the molecule contains only two kinds of tin atom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have determined the structure of the reduced form of the DsbA oxidoreductase from Vibrio cholerae. The reduced structure shows a high level of similarity to the crystal structure of the oxidized form and is typical of this class of enzyme containing a thioredoxin domain with an inserted α-helical domain. Proteolytic and thermal stability measurements show that the reduced form of DsbA is considerably more stable than the oxidized form. NMR relaxation data have been collected and analyzed using a model-free approach to probe the dynamics of the reduced and oxidized states of DsbA. Akaike's information criteria have been applied both in the selection of the model-free models and the diffusion tensors that describe the global motions of each redox form. Analysis of the dynamics reveals that the oxidized protein shows increased disorder on the pico- to nanosecond and micro- to millisecond timescale. Many significant changes in dynamics are located either close to the active site or at the insertion points between the domains. In addition, analysis of the diffusion data shows there is a clear difference in the degree of interdomain movement between oxidized and reduced DsbA with the oxidized form being the more rigid. Principal components analysis has been employed to indicate possible concerted movements in the DsbA structure, which suggests that the modeled interdomain motions affect the catalytic cleft of the enzyme. Taken together, these data provide compelling evidence of a role for dynamics in the catalytic cycle of DsbA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular mechanisms underlying thiol-based redox control are poorly defined. Disulfide bonds between Cys residues are commonly thought to confer extra rigidity and stability to their resident protein, forming a type of proteinaceous spot weld. Redox biologists have been redefining the role of disulfides over the last 30–40 years. Disulfides are now known to form in the cytosol under conditions of oxidative stress. Isomerization of extracellular disulfides is also emerging as an important regulator of protein function. The current paradigm is that the disulfide proteome consists of two subproteomes: a structural group and a redox-sensitive group. The redoxsensitive group is less stable and often associated with regions of stress in protein structures. Some characterized redox-active disulfides are the helical CXXC motif, often associated with thioredoxin-fold proteins; and forbidden disulfides, a group of metastable disulfides that disobey elucidated rules of protein stereochemistry. Here we discuss the role of redox-active disulfides as switches in proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synchrotron infrared (IR) and micro-Raman spectroscopic studies have been performed on zeolite natrolites as a function of the non-framework composition at ambient conditions. This establishes the spectroscopic characterization of the ion-exchanged natrolites in the alkali-metal series both in the as-prepared hydrated (M-NAT-hyd, M = Li, Na, K, Rb, and Cs) and some stable dehydrated forms (M-NAT-deh, M = Rb and Cs). The former series exhibits non-framework cation-size dependent opening of the helical channels to span ca. 21° range in terms of the chain rotation angle, ? (or ca. 45° range in terms of the chain bridging angle, T-O2-T). For these hydrated phases, both IR and Raman spectra reveal that the degree of the red-shifts in the frequencies of the helical 8-ring channel as well as the 4-ring unit is proportional to the ionic radius of the non-framework cations. Linear fits to the data show negative slopes of -55.7 from Raman and -18.3 from IR in the 8-ring frequencies and ionic radius relationship. The spectroscopic data are also used to identify the modes of the dehydration-induced "collapse" of the helical 8-ring channels as observed in the stable anhydrous Rb-NAT-deh and Cs-NAT-deh. In addition, we demonstrate that the spectroscopic data in the hydrated series can be used to distinguish different water arrangements along the helical channels based on the frequency shifts in the H-O-H bending band and the changes in the O-H stretching vibration modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural phase transitions in hydrous Cs-exchanged natrolite (Cs-NAT-hyd) and anhydrous Cs-exchanged natrolite (Cs-NAT-anh) have been investigated as a function of pressure and temperature using micro-Raman scattering and synchrotron infrared (IR) spectroscopy with pure water as the penetrating pressure medium. The spectroscopic results indicate that Cs-NAT-hyd undergoes a reversible phase transition around 4.72 GPa accompanied by the discontinuous frequency shifts of the breathing vibrational modes of the four-ring and helical eight-ring units of the natrolite framework. On the other hand, we observe that Cs-NAT-anh becomes rehydrated at 0.76 GPa after heating to 100 °C and then transforms into two distinctive phases at 2.24 and 3.41 GPa after temperature treatments at 165 and 180 °C, respectively. Both of these high-pressure phases are characterized by the absence of the helical eight-ring breathing modes, which suggests the collapse of the natrolite channel and formation of dense high-pressure polymorphs. Together with the fact that these high-pressure phases are recoverable to ambient conditions, our results imply a novel means for radionuclide storage utilizing pressure and a porous material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The protic ionic liquids (pILs), triethylammonium acetate, triethylammonium trifluoroacetate, triethylammonium mesylate and trimethylammonium sulfate were used to induce various native and non-native conformational states of the protein β-lactoglobulin (βLG). Changes in the secondary structure of βLG were observed on moving from a high water content to a high pIL content. We examined the stability of various pIL induced states via thermal unfolding and refolding, where it was found that at a given pIL concentration a highly stable non-native conformation was formed. The βLG non-native conformation was characterized by a high α-helical content. Additionally, pIL conditions that promoted amyloid fibril formation were identified and characterized by CD, a Thioflavin T binding assay and transmission electron microscopy (TEM). This work highlights the use of pILs as solvents in the study of protein folding using βLG as a model system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Albatrosses and sea turtles are known to perform extremely long-distance journeys between disparate feeding areas and breeding sites located on small, isolated, oceanic islands or at specific coastal sites. These oceanic journeys, performed mainly over or through apparently featureless mediums, indicate impressive navigational abilities, and the sensory mechanisms used are still largely unknown. This research used three different approaches to investigate whether bi-coordinate navigation based on magnetic field gradients is likely to explain the navigational performance of wandering albatrosses in the South Atlantic and Indian Oceans and of green turtles breeding on Ascension Island in the South Atlantic Ocean. The possibility that magnetic field parameters can potentially be used in a bi-coordinate magnetic map by wandering albatrosses in their foraging area was investigated by analysing satellite telemetry data published in the literature. The possibilities for using bi-coordinate magnetic navigation varied widely between different areas of the Southern Oceans, indicating that a common mechanism, based on a bi-coordinate geomagnetic map alone, was unlikely for navigation in these areas. In the second approach, satellite telemetry was used to investigate whether Ascension Island green turtles use magnetic information for navigation during migration from their breeding island to foraging areas in Brazilian coastal waters. Disturbing magnets were applied to the heads and carapaces of the turtles, but these appeared to have little effect on their ability to navigate. The only possible effect observed was that some of the turtles with magnets attached were heading for foraging areas slightly south of the control turtles along the Brazilian coast. In the third approach, breeding female green turtles were deliberately displaced in the waters around Ascension Island to investigate which cues these turtles might use to locate and return to the island; the results suggested that cues transported by wind might be involved in the final stages of navigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

μ-Conotoxin μ-KIIIA, from Conus kinoshitai, blocks mammalian neuronal voltage-gated sodium channels (VGSCs) and is a potent analgesic following systemic administration in mice. We have determined its solution structure using NMR spectroscopy. Key residues identified previously as being important for activity against VGSCs (Lys7, Trp8, Arg10, Asp11, His12, and Arg14) all reside on an α-helix with the exception of Arg14. To further probe structure−activity relationships of this toxin against VGSC subtypes, we have characterized the analogue μ-KIIIA[C1A,C9A], in which the Cys residues involved in one of the three disulfides in μ-KIIIA were replaced with Ala. Its structure is quite similar to that of μ-KIIIA, indicating that the Cys1−Cys9 disulfide bond could be removed without any significant distortion of the α-helix bearing the key residues. Consistent with this, μ-KIIIA[C1A,C9A] retained activity against VGSCs, with its rank order of potency being essentially the same as that of μ-KIIIA, namely, NaV1.2 > NaV1.4 > NaV1.7 ≥ NaV1.1 > NaV1.3 > NaV1.5. Kinetics of block were obtained for NaV1.2, NaV1.4, and NaV1.7, and in each case, both kon and koff values of μ-KIIIA[C1A,C9A] were larger than those of μ-KIIIA. Our results show that the key residues for VGSC binding lie mostly on an α-helix and that the first disulfide bond can be removed without significantly affecting the structure of this helix, although the modification accelerates the on and off rates of the peptide against all tested VGSC subtypes. These findings lay the groundwork for the design of minimized peptides and helical mimetics as novel analgesics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monotremes (platypus and echidna) are the descendants of the oldest ancestor of all extant mammals distinguished from other mammals by mode of reproduction. Monotremes lay eggs following a short gestation period and after an even briefer incubation period, altricial hatchlings are nourished over a long lactation period with milk secreted by nipple-less mammary patches located on the female's abdomen. Milk is the sole source of nutrition and immune protection for the developing young until weaning. Using transcriptome and mass spectrometry analysis of milk cells and milk proteins, respectively, a novel Monotreme Lactation Protein (MLP) was identified as a major secreted protein in milk. We show that platypus and short-beaked echidna MLP genes show significant homology and are unique to monotremes. The MLP transcript was shown to be expressed in a variety of tissues; however, highest expression was observed in milk cells and was expressed constitutively from early to late lactation. Analysis of recombinant MLP showed that it is an N-linked glycosylated protein and biophysical studies predicted that MLP is an amphipathic, α-helical protein, a typical feature of antimicrobial proteins. Functional analysis revealed MLP antibacterial activity against both opportunistic pathogenic Staphylococcus aureus and commensal Enterococcus faecalis bacteria but showed no effect on Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, and Salmonella enterica. Our data suggest that MLP is an evolutionarily ancient component of milk-mediated innate immunity absent in other mammals. We propose that MLP evolved specifically in the monotreme lineage supporting the evolution of lactation in these species to provide bacterial protection, at a time when mammals lacked nipples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synchrotron infrared (IR) and micro-Raman spectra of natrolites containing alkaline-earth ions (Ca2+, Sr2+, and Ba2+) and heavy metals (Cd2+, Pb2+, and Ag+) as extra-framework cations (EFCs) were measured under ambient conditions. Complementing our previous spectroscopic investigations of natrolites with monovalent alkali metal (Li+, Na+, K+, Rb +, and Cs+) EFCs, we establish a correlation between the redshifts of the frequencies of the 4-ring and helical 8-ring units and the size of the EFCs in natrolite. Through ab initio calculations we have derived structural models of Ca2+- and Ag+-exchanged natrolites with hydrogen atoms, and found that the frequency shifts in the H - O - H bending mode and the differences in the O - H stretching vibration modes can be correlated with the orientations of the water molecules along the natrolite channel. Assuming that the members of a solid solution series behave as an ideal mixture, we will be able to use spectroscopy to probe compositions. Deviation from ideal behavior might indicate the occurrence of phase separation on various length scales. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.