8 resultados para Heavy-ion collision

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

All rights reserved. A graphene nanodots-encaged porous gold electrode via ion beam sputtering deposition (IBSD) for electrochemical sensing is presented. The electrodes were fabricated using Au target, and a composite target of Al and graphene, which were simultaneously sputtered onto glass substrates by Ar ion beam, followed with hydrochloric acid corrosion. The as-prepared graphene nanodots-encaged porous gold electrodes were then used for the analysis of heavy metal ions, e.g. Cu2+ and Pb2+ by Osteryoung square wave voltammetry (OSWV). These porous electrodes exhibited enhanced detection range for the heavy metal ions due to the entrapped graphene nanodots in 3-D porous structure. In addition, it was also found that when the thickness of porous electrode reached 40 nm the detection sensitivity came into saturation. The linear detection range is 0.009-4 μM for Cu2+ and 0.006-2.5 μM for Pb2+. Good reusability and repeatability were also observed. The formation mechanism and 3-D structure of the porous electrode were also investigated using scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectra (XPS). This graphene entrapped 3-D porous structure may envision promising applications in sensing devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a series of experimental tests on new practical approaches in membrane design to improve extraction capacity and rate. We chose an extraction system involving Aliquat 336 as the extractant and Cd(II) as the metal ion to be extracted to demonstrate these new approaches. The core element in the new membrane assembly was the extractant loaded sintered glass filter. This membrane assembly provided a large interface area between the extractant and the aqueous solution containing metal ions. By recycling the aqueous solution through the membrane assembly, the extraction rate was significantly improved. The membrane assembly also offered good extraction capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On-site collision tests of full-scale concrete barriers are an important method to understand what happens to concrete barriers when vehicles collide with them. However, such tests require both time and money, so modeling and simulation of collisions by computer have been developed as an alternative in this research. First, spring subgrade models were developed to formulate the ground boundary of concrete barriers based on previous experiments. Then, the finite element method models were developed for both heavy trucks and concrete barriers to simulate their dynamic collision performances. Comparison of the results generated from computer simulations and on-site experiments demonstrates that the developed models can be applied to simulate the collision of heavy trucks with concrete barriers, to replicate the movement of the truck at the collision, and to investigate the performance of the concrete barriers. The developed research methodology can be widely used to support the design of new concrete barriers and the safety analysis of existing ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real vehicle collision experiments on full-scale road safety barriers are important to determine the outcome of a vehicle versus barrier impact accident. However, such experiments require large investment of time and money. Numerical simulation has therefore been imperative as an alternative method for testing concrete barriers. In this research, spring subgrade models were first developed to simulate the ground boundary of concrete barriers. Both heavy trucks and concrete barriers were modeled using finite element methods (FEM) to simulate dynamic collision performances. Comparison of the results generated from computer simulations and on-site full-scale experiments demonstrated that the developed models could be applied to simulate the collision of heavy trucks with concrete barriers to provide the data to design new road safety barriers and analyze existing ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis covers the development of the traditionally fluorescent bis(8-quinolinol-5-sulfonic acid) magnesium (II) fluorophore as a chemiluminescent emitter. A brief description of luminescence spectroscopy and its application to analytical chemistry lays the foundation to the discussion of the results obtained herein. This includes the synthesis and identification of two so called ‘water soluble’ aryl oxamides 2,2’-oxalyl-bis(trifluoromethanesulfonyl) imino] ethylene-bis(N- methylpyridinium) trifluoromethane sulfonate (PETQ) and 2,2’-oxalyl-bis(trifluoromethanesulfonyl) imino]ethylene-bis(N-pyridinium) chloride (PETH), previously developed for the US navy as a possible emergency light source, yet the synthetic methodology were incomplete. The inconsistencies of the synthetic methods for PETQ and PETH were overcome with yields satisfactory for their preliminary analytical evaluation. The evaluation of these aryl oxamides, including 4,4’-oxalyI- bis[(trifluoromethanesulfonyl) imino]ethylene-bis(l-methyM-benzylpiperidinium) trifluoromethanesulfonate (BPTQ), 4,4’-oxalyl-bis [(trifluoromethylsulfonyl)imino] ethylene-bis(N-methylmorpholinium)trifluoromethanesulfonate (METQ) and the oxalate bis(2,4,6-trichlorophenyl) oxalate (TCPO) were performed with the peroxyoxalate chemiluminescent reaction using bis(8-quinolinol-5-sulfonic acid) magnesium (II) as the fluorophore. A univariate optimisation of this system resulted in 0,0082 mol 1-1 the detection limit of magnesium in the absence of cationic surfactants and 0.0041 mol 1-1 in their presence for the majority of these compounds. The oxamides were found to be insoluble in water with long ulrasonication periods required to dissolve the compound, with solvents such as acetonitrile preferred. The determination of other chemiluminescent metal-8HQS chelates to replace magnesium -8HQS in the peroxyoxalate were limited to Al (III), Cd (II), Ca (II), In (II) and Zn (II), unfortunately these metals all possessed poorer detection limits than those obtained using magnesium The base reaction conditions used for the flow injection system with chemiluminescent detection were transferred to an ion chromatographic configuration for the separation of magnesium from other cations on an exchange column. After a univariate and simplex optimisation of these conditions, the detection limit of magnesium was found to be 0.0411 mol 1-1 which was less than the limits that could be achieved with fluorescent detection, The further development of this reaction to incorporate the displacement of magnesium from Mg-EDTA by other metals that possessed a higher conditional stability constant than magnesium also proved to be problematic with interferences from not only EDTA but from the eluant (lactic acid) from the cation column. Using this system the detection limits of the displacing metals were found to be in the order of 10 mg 1-1 which was substantially less that what was observed when exactly the same configuration was used with fluorescent detection. The final component of the thesis entails the discussion of the background emission that results from the reaction of oxamides/oxalates with hydrogen peroxide. A detailed investigation into the reaction of TCPO and hydrogen peroxide in the presence of various additives, such as imidazole , heavy atoms and triethylamine illustrated the existence of a further intermediate in fee mechanism for this reaction. The species responsible for this emission was attributed to the degradation product 2,4,6-trichlorophenyi of TCPO, which was supported by the non-existent background present with the oxamides that do not contain this degradation product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A significant number of biosorption studies on the removal of heavy metal from aqueous solutions have been conducted worldwide. Nearly all of them have been directed towards optimizing biosorption parameters to obtain the highest removal efficiency while the rest of them are concerned with the biosorption mechanism. Combinations of FTIR, SEM-EDX, TEM as well as classical methods such as titrations are extremely useful in determining the main processes on the surfaces of biosorbents. Diverse functional groups represented by carboxyl, hydroxyl, sulfate and amino groups play significant roles in the biosorption process. Solution pH normally has a large impact on biosorption performance. In brief, ion exchange and complexation can be pointed out as the most prevalent mechanisms for the biosorption of most heavy metals.