69 resultados para Heat - Transmission - Computer simulation

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms of heat and mass transfers between heat-treatment fluidised beds and immersed workpiece were studied by using computational simulation and experimental validation. A model called Double Particle-layer and Porous Medium was developed to simulate the gas flow and heat transfer between fluidised beds and immersed workpiece.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Often manufacturing enterprises will maintain high levels of Work In Progress (WIP) to maximise production throughput. Using computer simulation, this thesis investigates a manufacturing facility and identifies an optimal level of WIP. At this optimum throughput is maximised, manufacturing lead times are minimised, and the WIP level is significantly reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In contrast to most scientific disciplines, sports science research has been characterized by comparatively little effort investment in the development of relevant phenomenologi-cal models. Scarcer yet is the application of said models in practice. We present a framework which allows resistance training practitioners to employ a recently proposed neu-romuscular model in actual training program design. The first novelty concerns the monitoring aspect of coaching. A method for extracting training performance characteristics from loosely constrained video sequences, effortlessly and with minimal human input, using computer vision is described. The extracted data is subsequently used to fit the underlying neuromuscular model. This is achieved by solving an inverse dynamics problem corresponding to a particular exercise. Lastly, a computer simulation of hypothetical training bouts, using athlete-specific capability parameters, is used to predict the effected adaptation and changes in performance. The software described here allows the practitioner to manipulate hypothetical training parameters and immediately see their effect on predicted adaptation for a specific athlete. Thus, this work presents a holistic view of the monitoring-assessment-adjustment loop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large corpus of data obtained by means of empirical study of neuromuscular adaptation is currently of limited use to athletes and their coaches. One of the reasons lies in the unclear direct practical utility of many individual trials. This paper introduces a mathematical model of adaptation to resistance training, which derives its elements from physiological fundamentals on the one side, and empirical findings on the other. The key element of the proposed model is what is here termed the athlete’s capability profile. This is a generalization of length and velocity dependent force production characteristics of individual muscles, to an exercise with arbitrary biomechanics. The capability profile, a two-dimensional function over the capability plane, plays the central role in the proposed model of the training-adaptation feedback loop. Together with a dynamic model of resistance the capability profile is used in the model’s predictive stage when exercise performance is simulated using a numerical approximation of differential equations of motion. Simulation results are used to infer the adaptational stimulus, which manifests itself through a fed back modification of the capability profile. It is shown how empirical evidence of exercise specificity can be formulated mathematically and integrated in this framework. A detailed description of the proposed model is followed by examples of its application—new insights into the effects of accommodating loading for powerlifting are demonstrated. This is followed by a discussion of the limitations of the proposed model and an overview of avenues for future work.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heat transfer on the surface of an object in a gas fluidised bed is sequentially and alternately induced by particle-packet and gas bubble. This phenomenon is studied with computational simulation. The particle-packet and bubble are modelled by a double particle-layers and porous medium model and a hemispherical model, respectively. The heat transfer to and within the object is simulated concurrently. Different grid schemes are applied and different grid sizes are used in meshing the particle-packet and the object as there is a very large difference in their geometrical sizes. Based on theoretical analysis, an approximate method is developed to calculate the heat flux at the surface of the object. The simulation is implemented in a CFD package and the results are compared with experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer simulation is a powerful tool to predict microstructure and its evolution in dynamic and post-dynamic recrystallization. CAFE proposed as an appropriate approach by combining finite element (FE) method and cellular automata (CA) for recrystallization simulation. In the current study, a random grid cellular automaton (CA), as micro-scale model, based on finite element (FE), as macro-scale method, has been used to study initial and evolving microstructural features; including nuclei densities, dislocation densities, grain size and grain boundary movement during dynamic recrystallization in a C-Mn steel. An optimized relation has been established between mechanical variables and evolving microstructure features during recrystallization and grain growth. In this model, the microstructure is defined as cells located within grains and grain boundaries while dislocations are randomly dispersed throughout microstructure. Changes of dislocation density during deformation are described considering hardening, recovery and recrystallization. Recrystallization is assumed to initiate near grain boundaries and nucleation rate was considered constant (site-saturated condition). The model produced a mathematical formulation which captured the initial and evolving microstructural entities and linked their effects to measurable macroscopic variables (e.g. stress).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer modelling and simulation is an indispensable tool of the information age, used extensively in design, analysis, operations, decision-making, optimization, and education and training. Manufacturing, production and design relies upon simulation to develop efficient production systems and factories that produce quality products. Computer simulation allows scientists and engineers to understand and predict three-dimensional and time-dependent phenomena in science and engineering discipline. This talk will focus on challenges associated with modelling and simulation in the manufacturing sector and through a number of case studies highlights the benefits gained through the use of such technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viral marketing is a form of peer-to-peer communication in which individuals are encouraged to pass on promotional messages within their social networks. Conventional wisdom holds that the viral marketing process is both random and unmanageable. In this paper, we deconstruct the process and investigate the formation of the activated digital network as distinct from the underlying social network. We then consider the impact of the social structure of digital networks (random, scale free, and small world) and of the transmission behavior of individuals on campaign performance. Specifically, we identify alternative social network models to understand the mediating effects of the social structures of these models on viral marketing campaigns. Next, we analyse an actual viral marketing campaign and use the empirical data to develop and validate a computer simulation model for viral marketing. Finally, we conduct a number of simulation experiments to predict the spread of a viral message within different types of social network structures under different assumptions and scenarios. Our findings confirm that the social structure of digital networks play a critical role in the spread of a viral message. Managers seeking to optimize campaign performance should give consideration to these findings before designing and implementing viral marketing campaigns. We also demonstrate how a simulation model is used to quantify the impact of campaign management inputs and how these learnings can support managerial decision making.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer modeling and simulation provide a foundation upon which industrial processes and systems can be transformed and innovation dramatically accelerated. Computer modeling and simulation is also an indispensable tool of the information age, used extensively in design, analysis, operations, decision-making, optimization, and education and training. Manufacturing, production and design relies upon simulation to develop efficient production systems and factories that produce quality products. Simulation in industry has yet to meet its full potential. The development of models is very time consuming, particularly for geometries of complex engineering systems such as manufacturing plants, automobiles, aircraft and ships. Computer simulation allows scientists and engineers to understand and predict three-dimensional and time-dependent phenomena in science and engineering discipline. This talk will focus on challenges associated with modeling and simulation in the manufacturing sector and through a number of case studies highlight the benefits gained through the use of such technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To optimize a regenerator’s structure and its operation parameters and, consequently, to increase the efficiency of heat recovery and to save energy, a computational approach is used to study the unsteady three-dimensional flow and heat transfer. The simulation is performed in two steps. In the first step, the gas flow and heat transfer in a typical sphere-bed unit is simulated to deduce a dimensionless equation of heat transfer between gas and sphere. In the second step, a model is developed to simplify the prototype and to simulate the gas flow and heat transfer in the whole regenerator. The heat exchange process in regenerators and the effects of the regenerator’s structure and operation parameters, such as gas mass flux, reversal time, regenerator height, sphere diameter, and thermophysical properties of the spheres, are studied with the model to determine efficiency of heat recovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigates the creation of a method for the connection and communication of commercial off the shelf discrete-event simulation packages for simulation models of manufacturing systems. Through this research a method to connect different commercial off the shelf discrete-event simulation packages was successfully developed facilitating parallel development of models and the creation of extremely large models.