4 resultados para HYPERFINE CONSTANTS

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An understanding of the rate and the mechanism of reaction is of fundamental importance in the many facets of chemistry. Electrochemical systems are further complicated by the heterogeneous boundary, between the solution and the electrode, that the electron passes through before any electrochemical reaction can take place. This thesis concerns the development of methods for analysing electrode kinetics. One part involves the further development of the Global Analysis procedure to include electrodes with a spherical geometry which are traditionally the most popular form of electrodes. Simulated data is analysed to ascertain the accuracy of the procedure and then the known artifacts of uncompensated solution resistance and charging current are added to the simulated data so that the effects can be observed. The experimental analysis of 2-methyl-2-nitropropane is undertaken and comparisons are made with the Marcus-Hush electrochemical theories concerning electrode kinetics. A related section explores procedures for the kinetic analysis of steady state voltammetric data obtained at microdisc electrodes. A method is proposed under the name of Normalised Steady State Voltammetry and is tested using data obtained from a Fast Quasi-Explicit Finite Difference simulation of diffusion to a microdisc electrode. In a second area of work using microelectrodes, the electrochemical behaviour of compounds of the general formula M(CO)3(η3 - P2P1) where M is either Cr, Mo or W and P2P' is bis(2-diphenylphosphinoethyl)phenylphosphine) is elucidated. The development of instrumentation and mathematical procedures relevant to the measurement and quantitation of these systems is also investigated. The tungsten compound represents the first examples where the 17-electronfac+ and mer+ isomers are of comparable stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to dielectric spectroscopy measurements, ionic liquids (ILs) have rather modest dielectric constants that reflect contributions from distortion and electronic polarization caused by the molecular polarizability as well as the orientation polarization caused by the permanent dipole moment of the ions. To understand the relative importance of these various contributions, the electronic polarizabilities of 27 routinely used ionic liquid ions of different symmetry and size were calculated using ab initio-based methods such as HF and MP2. Using the Clausius–Mossotti equation, these polarizabilities were then used to obtain the electronic polarization contribution (εop) to the dielectric constants of six ionic liquids, [C2mim][BF4], [C2mpyr][N(CN)2], [C2mim][CF3SO3], [EtNH3][NO3], [C2mim][NTf2] and [C2mim][EtSO4]. Theoretical εop values were compared to experimental refractive indices of these ionic liquids as well as to those of traditional molecular solvents such as water, tetrahydrofuran (THF), dimethylsulfoxide (DMSO) and formamide. The dipole moments of the ions were also calculated, and from these it is shown that the molecular reorientation component of the dielectric constants of the ionic liquids consisting of ions with small or negligible dipole moments is quite small. Thus it is concluded that a contribution from a form of “ionic polarization” must be present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From data generated using 1H NMR titrations, different methodologies to calculate binding constants are compared. The ‘local’ analysis method that uses only a single isotherm (only one H-bond donor) is compared against the ‘global’ method (that includes many or all H-bond donors). The results indicate that for simple systems both methods are suitable, however, the global approach consistently provides a K a value with uncertainties up to 30% smaller. For more complex binding, the global analysis method gives much more robust results than the local methods. This study also highlights the need to explore several different modes when data do not fit well to a simple 1:1 complexation model and illustrates the need for better methods to estimate uncertainties in supramolecular binding experiments.