6 resultados para HO-1

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

To examine whether genes associated with cellular defense against oxidative stress are associated with insulin sensitivity, patients with type 2 diabetes (n = 7) and age-matched (n = 5) and young (n = 9) control subjects underwent a euglycemic-hyperinsulinemic clamp for 120 min. Muscle samples were obtained before and after the clamp and analyzed for heat shock protein (HSP)72 and heme oxygenase (HO)-1 mRNA, intramuscular triglyceride content, and the maximal activities of β-hyroxyacyl-CoA dehydrogenase (β-HAD) and citrate synthase (CS). Basal expression of both HSP72 and HO-1 mRNA were lower (P < 0.05) by 33 and 55%, respectively, when comparing diabetic patients with age-matched and young control subjects, with no differences between the latter groups. Both basal HSP72 (r = 0.75, P < 0.001) and HO-1 (r = 0.50, P < 0.05) mRNA expression correlated with the glucose infusion rate during the clamp. Significant correlations were also observed between HSP72 mRNA and both β-HAD (r = 0.61, P < 0.01) and CS (r = 0.65, P < 0.01). HSP72 mRNA was induced (P < 0.05) by the clamp in all groups. Although HO-1 mRNA was unaffected by the clamp in both the young and age-matched control subjects, it was increased (P < 0.05) ∼70-fold in the diabetic patients after the clamp. These data demonstrate that genes involved in providing cellular protection against oxidative stress are defective in patients with type 2 diabetes and correlate with insulin-stimulated glucose disposal and markers of muscle oxidative capacity. The data provide new evidence that the pathogenesis of type 2 diabetes involves perturbations to the antioxidant defense mechanism within skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The condensation of [Ph2(OH)Sn(CH2)nSn(OH)Ph2] (1-3; n = 1-3) with HO3SCF3 and HO2PPh2 provided [Ph2Sn(CH2)nSnPh2(OH)](O3SCF3) (4-6; n = 1-3) and [Ph2(O2PPh2)Sn(CH2)nSn(O2PPh2)Ph2] (10-12; n = 1-3), respectively. The reaction of [Ph2Sn(CH2)nSnPh2(OH)](O3SCF3) (4-6; n = 1-3) with HO2PPh2 and NaO2PPh2 gave rise to the formation of [Ph2Sn(CH2)nSnPh2(O2PPh2)](O3SCF3) (7-9; n = 1-3) and [Ph2(OH)Sn(CH2)nSn(O2PPh2)Ph2] (13-15; n = 1-3), respectively. In the solid state, compounds 4-9 comprise ion pairs of cationic cyclo-[Ph2SnCH2SnPh2(OH)]22+, cyclo-[Ph2Sn(CH2)nSnPh2(OH)]+ (n = 2, 3), and cyclo-[Ph2Sn(CH2)nSnPh2(O2PPh2)]+ (n = 1-3) and triflate anions. In MeCN, the eight-membered-ring system cyclo-[Ph2SnCH2SnPh2(OH)]22+ appears to be in equilibrium with the four-membered-ring system cyclo-[Ph2SnCH2SnPh2(OH)]+. In contrast, compounds 10-15 show no ionic character. Compounds 1-15 were characterized by multinuclear NMR spectroscopy in solution and in the solid state, IR spectroscopy, conductivity measurements, electrospray mass spectrometry, osmometric molecular weight determinations, and X-ray crystallography (4, 5, 7, and 12).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mammalian transcription factor SPI-1 (synonyms: SPI1, PU.1, or Sfpi1) plays a critical role in myeloid development. To examine early myeloid commitment in the zebrafish embryo, we isolated a gene from zebrafish that is a SPI-1 orthologue on the basis of homology and phylogenetic considerations. The zebrafish spi1 (pu1) gene was first expressed at 12 h postfertilization in rostral lateral plate mesoderm (LPM), anatomically isolated from erythroid development in caudal lateral plate mesoderm. Fate-mapping traced rostral LPM cells from the region of initial spi1 expression to a myeloid fate. spi1 expression was lost in the bloodless mutant cloche, but rostral spi1 expression and myeloid development were preserved in the mutant spadetail, despite its complete erythropoietic failure. This dissociation of myeloid and erythroid development was further explored in studies of embryos overexpressing BMP-4, or chordin, in bmp-deficient swirl and snailhouse mutants, and chordin-deficient chordino mutants. These studies demonstrate that, in zebrafish, spi1 marks a rostral population of LPM cells committed to a myeloid fate anatomically separated from and developmentally independent of erythroid commitment in the caudal LPM. Such complete anatomical and developmental dissociation of two hematopoietic lineages adds an interesting complexity to the understanding of vertebrate hematopoietic development and presents significant implications for the mechanisms regulating axial patterning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The metabolic syndrome (MetS) is a complex of multiple risk factors that contribute to the onset of cardiovascular disorder, including lowered levels of high-density lipoprotein (HDL) and abdominal obesity. Smoking, mood disorders, and oxidative stress are associated with the MetS. Paraoxonase (PON)1 is an antioxidant bound to HDL, that is under genetic control by functional polymorphisms in the PON1 Q192R coding sequence. Aims and methods This study aimed to delineate the associations of the MetS with plasma PON1 activity, PON1 Q192R genotypes, smoking, and mood disorders (major depression and bipolar disorder), while adjusting for HDL cholesterol, body mass index, age, gender, and sociodemographic data. We measured plasma PON1 activity and serum HDL cholesterol and determined PON1 Q192R genotypes through functional analysis in 335 subjects, consisting of 97 with and 238 without MetS. The severity of nicotine dependence was measured using the Fagerström Nicotine Dependence Scale. Results PON1 Q192R functional genotypes and PON1 Q192R genotypes by smoking interactions were associated with the MetS. The QQ and QR genotypes were protective against MetS while smoking increased metabolic risk in QQ carriers only. There were no significant associations between PON1 Q192R genotypes and smoking by genotype interactions and obesity or overweight, while body mass index significantly increased MetS risk. Smoking and especially severe nicotine dependence are significantly associated with the MetS although these effects were no longer significant after considering the effects of the smoking by PON1 Q192R genotype interaction. The MetS was not associated with mood disorders, major depression or bipolar disorder. Discussion PON1 Q192R genotypes and genotypes by smoking interactions are risk factors for the MetS that together with lowered HDL and increased body mass and age contribute to the MetS.