2 resultados para HETEROGENEOUS SURFACES

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photochemical degradation of dissolved organic matter (DOM) derived from the leaves of River Red Gum (Eucalyptus camaldulensis) was examined, with a particular focus on the photochemical generation of CO2, consumption of O2, and the effect of particulate iron minerals on these photochemical reactions. Solutions of leaf leachate were irradiated with ultraviolet and visible light in the presence and absence of amorphous iron oxides. Addition of fresh iron oxide was found to increase the rate of photodegradation of the organic matter by up to an order of magnitude compared to the reactions without added iron oxide. The ratio of CO2 produced to O2 consumed was ~1:1 in both the presence and absence of iron oxyhydroxide. The reactivity of the iron oxides was dependent on the preparation method and decreased with increased storage time. These results suggest that photochemical reactions on particle surfaces should be considered when examining carbon transformation in aquatic ecosystems, especially at sites with potential for the production of iron oxyhydroxides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic liquids (ILs) based on trihexyltetradecylphosphonium coupled with either diphenylphosphate or bis(trifluoromethanesulfonyl)amide have been shown to react with magnesium alloy surfaces, leading to the formation a surface film that can improve the corrosion resistance of the alloy. The morphology and microstructure of the magnesium surface seems critical in determining the nature of the interphase, with grain boundary phases and intermetallics within the grain, rich in zirconium and zinc, showing almost no interaction with the IL and thereby resulting in a heterogeneous surface film. This has been explained, on the basis of solid-state NMR evidence, as being due to the extremely low reactivity of the native oxide films on the intermetallics (ZrO2 and ZnO) with the IL as compared with the magnesium-rich matrix where a magnesium hydroxide and/or carbonate inorganic surface is likely. Solid-state NMR characterization of the ZE41 alloy surface treated with the IL based on (Tf)2N− indicates that this anion reacts to form a metal fluoride rich surface in addition to an organic component. The diphenylphosphate anion also seems to undergo an additional chemical process on the metal surface, indicating that film formation on the metal is not a simple chemical interaction between the components of the IL and the substrate but may involve electrochemical processes.