6 resultados para HEAT-CONDUCTION

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper a novel computational technique called Parameterized Perturbation Method (PPM) is used to obtain the solutions of nonlinear fundamental heat conduction equations. Three well known problems in the area of heat transfer are addressed to be solved. An analytical investigation is carried out for: (a) the temperature distribution in a fin with a temperature-dependent thermal conductivity, (b) the cooling of the lumped system with variable specific heat, and (c) the temperature distribution of a convective-radiative fin. The validity of the results of PPM solution was verified via comparison with numerical results obtained using a fourth order Runge-Kutta method. These comparisons revealed that PPM is a powerful approach for solving these problems. Also, the results showed that the main attributions of this method are very straightforward calculations and low computational burden compared to previous analytical and numerical approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of manufacturing process on the drop-weight impact damage in woven carbon/epoxy laminates was inspected by visual observation, dyepenetrant X-ray technique, and optical microscopy observation. The MTM56/ CF0300 woven quasi-isotropic laminates were fabricated by two processes: the autoclave and the Quickstep processes. QuickstepTM is a novel composite manufacturing process, which was designed for the out-of-autoclave production of high-quality composite parts at lower cost. It utilizes higher heat conduction of fluid other than gas to transfer heat to components, which results in much shorter cure cycles. The laminates cured by this fast heating process showed different impact failure modes from those cured by the conventional autoclave process. The residual indentation in the top side of the Quickstep-cured laminates had a bigger diameter, but a smaller depth at the same impact energy level. Dye-penetrant X-ray revealed more intense and connected impact damage regions in the autoclave-cured laminates. Optical micrography as a supplementary method showed less severe matrix damage in the quickstep-cured laminates indicating a more ductile property of the resin matrix cured at a faster heating rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transient heat conduction in a functionally graded graphite/polymer nanocomposite (FGN) plate is analyzed using finite element method (FEM). Stepwise gradient structure consisted of four different nanocomposite layers with 0, 5, 10 and 20 wt% of graphite. Thermal conductivity and specific heat capacity of the individual layers were determined using C-Therm TCi Thermal Conductivity Analyzer (Canada) in temperature range of -20 to 100 °C. Temperature history and temperature distribution across the thickness of the plate with two different configurations for two positive and negative temperature gradients are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermo-Electrochemical cells (Thermocells/TECs) transform thermal energy into electricity by means of electrochemical potential disequilibrium between electrodes induced by a temperature gradient (ΔT). Heat conduction across the terminals of the cell is one of the primary reasons for device inefficiency. Herein, we embed Poly(Vinylidene Fluoride) (PVDF) membrane in thermocells to mitigate the heat transfer effects - we refer to these membrane-thermocells as MTECs. At a ΔT of 12 K, an improvement in the open circuit voltage (Voc) of the TEC from 1.3 mV to 2.8 mV is obtained by employment of the membrane. The PVDF membrane is employed at three different locations between the electrodes i.e. x = 2 mm, 5 mm, and 8 mm where 'x' defines the distance between the cathode and PVDF membrane. We found that the membrane position at x = 5 mm achieves the closest internal ΔT (i.e. 8.8 K) to the externally applied ΔT of 10 K and corresponding power density is 254 nWcm-2; 78% higher than the conventional TEC. Finally, a thermal resistivity model based on infrared thermography explains mass and heat transfer within the thermocells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To improve the understanding of the heat transfer mechanism and to find a reliable and simple heat-transfer model, the gas flow and heat transfer between fluidized beds and the surfaces of an immersed object is numerically simulated based on a double particle-layer and porous medium model. The velocity field and temperature distribution of the gas and particles are analysed during the heat transfer process. The simulation shows that the change of gas velocity with the distance from immersed surface is consistent with the variation of bed voidage, and is used to validate approximately dimensional analysing result that the gas velocity between immersed surface and particles is 4.6Umf/εmf. The effects of particle size and particle residence time on the thermal penetration depth and the heat-transfer coefficients are also discussed.