11 resultados para HEAT flux

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The heat transfer on the surface of an object in a gas fluidised bed is sequentially and alternately induced by particle-packet and gas bubble. This phenomenon is studied with computational simulation. The particle-packet and bubble are modelled by a double particle-layers and porous medium model and a hemispherical model, respectively. The heat transfer to and within the object is simulated concurrently. Different grid schemes are applied and different grid sizes are used in meshing the particle-packet and the object as there is a very large difference in their geometrical sizes. Based on theoretical analysis, an approximate method is developed to calculate the heat flux at the surface of the object. The simulation is implemented in a CFD package and the results are compared with experiments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In 1999, a 2100 m2 (GFA) two-storey rammed earth building was built on the Thurgoona campus of Charles Sturt University. The climate at Thurgoona is considered Mediterranean – hot dry summers and cool winters. The internal and external walls of the building are constructed from 300-mm thick rammed earth (pise) and are load bearing. The thermal performance of the building has been investigated, both experimentally and theoretically over the summer and winter seasons of 2000/1. As part of these investigations heat flux sensors and thermistors were embedded in one of the external walls of a ground floor office, and data from the transducers has been used to determine the heat flow at the internal and external wall surfaces. The simulation software, TRNSYS, has been used to model the thermal performance of the same office. The programme allows the user to calculate the heat flow at the walls, which define any particular thermal zone. A comparison of measured and predicted values of heat flows and air temperatures has been used to validate the model. The model has then been used to simulate the effect of shading and added insulation on the thermal performance of the external walls in both summer and winter and these results are also presented in this paper.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The particle behaviour is studied by the analysis of particle images taken with a high speed CCD digital video camera. The comparison of particle dynamics is performed for the fluidised beds without part, with single part and with multi-parts. The results show that there are significant differences in particle behaviours both in different beds and at different locations at part surfaces. The total and radiative heat transfer coefficients at different surfaces of a metallic component in a high temperature fluidised bed are measured by a heat transfer probe developed in the present work. The principle of the heat transfer probe is to measure the change in temperature of the heated metallic piece with time and, then, to extract the heat flux and heat transfer coefficients. The structure of the probe is optimized with numerical simulation of energy conservation for measuring the heat transfer coefficient of 150~600 W/m2 K. The relationship between the particle dynamics and the heat transfer is analysed to form the basis for future more rational designs of fluidised beds as well as for improved quality control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The following research has been undertaken as a response to the recent controversy regarding the suitability of rammed earth wall construction as an effective building envelope. Empirical (in-situ) measurements of temperature and heat flux are taken on the walls of an existing rammed earth building in New South Wales, Australia. An analysis is performed which examines the influence of walls, floor, ceiling and windows on the recorded temperatures within the building. It appears that diffuse sky radiation transmitted by the windows is an important factor in the summer heat load, and that night time cooling coupled with thermal mass has a valuable conditioning effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research aims to investigate whether real spaces can support legitimate measurements on glazing energy and thermal comfort analysis. This paper presents the development of a research facility for doing this. It will test simple to complex glazing and shading systems in a real (occupied) interior office environment. The purpose of this research project is to compare measured results with those being simulated with existing software and to discover discrepancies between simulation and real measured results. What parameters characterize a glazing system, whether simple or complex? Can these parameters be used to predict the energy transfer and comfort in the space? One must begin with simple glazing systems and verify measured with readily known simulated results. It is, at present, very difficult to use geometric based software with thermal based software to predict the performance of complex glazing systems. However, if we can characterize glazing systems with a set of reliable measurements, we can provide the data necessary for predicting performance in a live space. Specifically, the Solar Heat Gain Coefficient (SHGC) is a variable parameter based upon solar incident angle to a glazing system and is intended to be measured in its integral components: solar transmittance and inward-flowing fraction (radiative/convective) heat gain. A new instrumental approach through variable surface coated heat flux meters is being investigated to provide the measurement of interior glazing surface radiative and convective heat gain. The results suggest that this instrumentation may support be a viable method of testing inward-flowing heat gains from the interior glass surface. The test set-up also considers the application of a well-known B&K 1221 Comfort Meter for determining thermal comfort responses in the ‘perimeter zone’ on the interior side of a façade. This work requires further investigation, but is intended to be used in conjunction with solar pyranometers measuring transmittance as well as the heat flux meter and surface temperature instrumentation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The castability and microstructures produced from strip casting simulations of three compositions in the 200 series stainless steels have been examined. The nucleation density was similar for all three compositions.The as-cast microstructure showed very fine austenite grains of 10–20 μm in width. Retained delta ferrite was observed in the inter-dendritic regions, and was likely to be stabilised by the segregation of Cr into these regions. An analysis of the crystallography expected of different solidification sequences is presented, but a strict adherence to the Kurdjumov-Sachs orientation relationship was not found in these samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of our study was to establish whether rectal temperature recordings in humans could be replaced by a non-invasive skin temperature sensor combined with a heat flux sensor (Double Sensor) located at the forehead to monitor core body temperature changes due to circadian rhythms. Rectal and Double Sensor data were collected continuously for 24h in seven men undertaking strict head-down tilt bed-rest. Individual differences between the two techniques varied between -0.72 and +0.55 degrees C. Nonetheless, when temperature data were approximated by cosinor analysis in order to compare circadian rhythm profiles between methods, it was observed that there were no significant differences between mesor, amplitude, and acrophase (P>0.310). It was therefore concluded that the Double Sensor technology is presently not accurate enough for performing single individual core body temperature measurements under resting conditions at normal ambient room temperature. Yet, it seems to be a valid, non-invasive alternative for monitoring circadian rhythm profiles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As a biological fibrous structure, silkworm cocoon provides multiple protective functionalities to safeguard the silk moth pupa’s metabolic activity. The mechanism of this protection could be adopted in clothing manufacture to provide more comfortable apparel. In this study, the thermal insulation properties of both domestic Bombyx mori (B. mori) and wild Antheraea pernyi (A. pernyi) cocoons were investigated under both warm and cold environmental conditions. Computational fluid dynamics models have been developed to simulate the heat transfer process through both types of cocoon wall structures. The simulation results show that the wild A. pernyi cocoon reduces the intensity of convection and heat flux between the environment and the cocoon interior and has higher wind resistance than its domestic counterpart. Compared with A. pernyi cocoon, the B. mori cocoon facilitates easy air transfer and decreases the temperature lag when the surrounding conditions are changed. The new knowledge has significant implications for developing biomimetic thermal functional materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a novel combined theoretical and computational model is developed to simulate the heat and mass transfer between a fluidised bed and a workpiece surface, and within the workpiece by considering the fluidised bed as a medium consisting of a double-particle layer and an even porous layer. The heat and mass-transfer flux from the fluidised bed to the workpiece surface is contributed by dense and bubble phases, respectively. The convective heat and mass transfer is simulated by analysing the gas dynamics in the fluidised bed, while radiative heat transfer is modelled by simulating photon emission in a three-dimensional particle array. The simulation shows that convection is approximately constant, while radiation contributes significantly to the heat transfer. The heat-transfer coefficient on an immersed surface near particles is about 6–10 times that on other areas. The transient heat and mass-transfer coefficient, heat and mass-transfer flux on any surface of the workpiece, transient temperature and carbon distributions at any position of the workpiece during the metal carburising process are studied with the simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To optimize a regenerator’s structure and its operation parameters and, consequently, to increase the efficiency of heat recovery and to save energy, a computational approach is used to study the unsteady three-dimensional flow and heat transfer. The simulation is performed in two steps. In the first step, the gas flow and heat transfer in a typical sphere-bed unit is simulated to deduce a dimensionless equation of heat transfer between gas and sphere. In the second step, a model is developed to simplify the prototype and to simulate the gas flow and heat transfer in the whole regenerator. The heat exchange process in regenerators and the effects of the regenerator’s structure and operation parameters, such as gas mass flux, reversal time, regenerator height, sphere diameter, and thermophysical properties of the spheres, are studied with the model to determine efficiency of heat recovery.