13 resultados para Growth-stages

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study was designed to determine whether the development of an increased aerobic capacity (increased potential for oxygen uptake) during the initial growth stages of hatchlings is associated with an increase in blood hemoglobin content. We measured the resting (at thermoneutrality) and maximum (cold induced)b oxygen uptake of Arctic Tern chicks from 0 to 9 days of age. In addition, blood hemoglobin content and hematocrit were measured. The results show that in spite of a marked increase in both resting and maximum oxygen uptake, indicating increased metabolic performance, there was a slight decrease in blood hemoglobin content during the first few days of development. A residual analysis, made to eliminate the effect of age, showed that blood hemoglobin content of individual chicks, blood hemoglobin contents is not a limiting factor for oxygen uptake by Arctic Tern chicks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examine whether corporate investment, financing, and cash policies are interdependent and follow a predictable pattern in line with the firm life-cycle. We find that investments and equity issuance decrease with firm life-cycle, while debt issuance and cash holdings increase in the introduction and growth stages and decrease in the mature and shake-out/decline stages of the firm's life-cycle. These results are robust after using various proxies for life-cycle and controlling for firm, CEO and board level characteristics. Collectively, our results show that corporate policies follow a firm life-cycle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stages-of-growth has been the most popular approach used for strategy development and implementation. The major stages of growth models such as C. F. Gibson and R. F. Nolan (1974) have been widely discussed and are particularly useful in understanding the implementation of IS in organisations. These models might be more representative of e-commerce implementation, however, if they took into account more recent IS developments such as B2B e-commerce. Using a case study research undertaken in Australia, this study proposes a model of stages of growth based on the use of B2B e-commerce technologies and applications in Australian organisations. Four stages of growth proposed for B2B e-commerce implementation are (i) initial e-commerce; (ii) centralised e-commerce; (iii) looking inward for benefits; and (iv) global e-commerce.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In situ neutron diffraction, transmission electron microscopy (TEM) and atom probe tomography (APT) have been used to study the early stages of bainite transformation in a 2 mass% Si nano-bainitic steel. It was observed that carbon redistribution between the bainitic ferrite and retained austenite at the early stages of the bainite transformation at low isothermal holding occurred in the following sequence: (i) formation of bainitic ferrite nuclei within carbon-depleted regions immediately after the beginning of isothermal treatment; (ii) carbon partitioning immediately after the formation of bainitic ferrite nuclei but substantial carbon diffusion only after 33 min of bainite isothermal holding; (iii) formation of the carbon-enriched remaining austenite in the vicinity of bainitic laths at the beginning of the transformation; (iv) segregation of carbon to the dislocations near the austenite/ferrite interface; and (v) homogeneous redistribution of carbon within the remaining austenite with the progress of the transformation and with the formation of bainitic ferrite colonies. Bainitic ferrite nucleated at internal defects or bainite/austenite interfaces as well as at the prior austenite grain boundary. Bainitic ferrite has been observed in the form of an individual layer, a colony of layers and a layer with sideplates at the early stages of transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As muscles become larger and stronger during growth and in response to increased loading, bones should adapt by adding mass, size, and strength. In this unilateral model, we tested the hypothesis that (1) the relationship between muscle size and bone mass and geometry (nonplaying arm) would not change during different stages of puberty and (2) exercise would not alter the relationship between muscle and bone, that is, additional loading would result in a similar unit increment in both muscle and bone mass, bone size, and bending strength during growth. We studied 47 competitive female tennis players aged 8–17 years. Total, cortical, and medullary cross-sectional areas, muscle area, and the polar second moment of area (Ip) were calculated in the playing and nonplaying arms using magnetic resonance imaging (MRI); BMC was assessed by DXA. Growth effects: In the nonplaying arm in pre-, peri- and post-pubertal players, muscle area was linearly associated BMC, total and cortical area, and Ip (r = 0.56–0.81, P < 0.09 to < 0.001), independent of age. No detectable differences were found between pubertal groups for the slope of the relationship between muscle and bone traits. Post-pubertal players, however, had a higher BMC and cortical area relative to muscle area (i.e., higher intercept) than pre- and peri-pubertal players (P < 0.05 to < 0.01), independent of age; pre- and peri-pubertal players had a greater medullary area relative to muscle area than post-pubertal players (P < 0.05 to < 0.01). Exercise effects: Comparison of the side-to-side differences revealed that muscle and bone traits were 6–13% greater in the playing arm in pre-pubertal players, and did not increase with advancing maturation. In all players, the percent (and absolute) side-to-side differences in muscle area were positively correlated with the percent (and absolute) differences in BMC, total and cortical area, and Ip (r = 0.36–0.40, P < 0.05 to < 0.001). However, the side-to-side differences in muscle area only accounted for 11.8–15.9% of the variance of the differences in bone mass, bone size, and bending strength. This suggests that other factors associated with loading distinct from muscle size itself contributed to the bones adaptive response during growth. Therefore, the unifying hypothesis that larger muscles induced by exercise led to a proportional increase in bone mass, bone size, and bending strength appears to be simplistic and denies the influence of other factors in the development of bone mass and bone shape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exercise during growth may increase peak bone mass; if the benefits are maintained it may reduce the risk of fracture later in life (1). It is hypothesised that exercise will preferentially enhance bone formation on the surface of cortical bone that is undergoing bone modeling at the time (2). Therefore, exercise may increase bone mass accrual on the outer periosteal surface during the pre- and peri-pubertal years, and on the inner endocortical surface during puberty (3). An increase in bone formation on the periosteal surface is, however, more effective for increasing bone strength than medullary contraction (4). While exercise may have a role in osteoporosis prevention, there is little evidential basis to support this notion. It is generally accepted that weight-bearing exercise is important, but it is not known how much, how often, what magnitude or how long children need to exercise before a clinically important increase in bone density is obtained. In this thesis, the effect of exercise on the growing skeleton is investigated in two projects. The first quantifies the magnitude and number of loads associated with and in a moderate and low impact exercise program and non-structured play. The second project examines how exercise affects bone size and shape during different stages of growth. Study One: The Assessment of the Magnitude of Exercise Loading and the Skeletal Response in Girls Questions: 1) Does moderate impact exercise lead to a greater increase in BMC than low impact exercise? 2) Does loading history influence the osteogenic response to moderate impact exercise? 3) What is the magnitude and number of loads that are associated with a moderate and low impact exercise program? Methods: Sixty-eight pre-and early-pubertal girls (aged 8.9±0.2 years) were randomised to either a moderate or low impact exercise regime for 8.5-months. In each exercise group the girls received either calcium fortified (-2000 mg/week) or non-fortified foods for the duration of the study. The magnitude and number of loads associated with the exercise programs and non-structured play were assessed using a Pedar in-sole mobile system and video footage, respectively. Findings: After adjusting for baseline BMC, change in length and calcium intake, the girls in the moderate exercise intervention showed greater increases in BMC at the tibia (2.7%) and total body (1.3%) (p ≤0.05). Girl's who participated in moderate impact sports outside of school, showed greater gains in BMC in response to the moderate impact exercise program compared to the low impact exercise program (2.5 to 4.5%, p ≤0.06 to 0.01). The moderate exercise program included -400 impacts per class, that were applied in a dynamic manner and the magnitude of impact was up to 4 times body weight. Conclusion: Moderate-impact exercise may be sufficient to enhance BMC accrual during the pre-pubertal years. However, loading history is likely to influence the osteogenic response to additional moderate impact exercise. These findings contribute towards the development of school-based exercise programs aimed at improving bone health of children. Study Two: Exercise Effect on Cortical Bone Morphology During Different Stages of Maturation in Tennis Players Questions: 1) How does exercise affect bone mass (BMC) bone geometry and bone strength during different stages of growth? 2) Is there an optimal stage during growth when exercise has the greatest affect on bone strength? Methods: MRI was used to measure average total bone, cortical and medullary areas at the mid- and distal-regions of the playing and non-playing humerii in 47 pre-, peri- and post-pubertal competitive female tennis players aged 8 to 17 years. To assess bone rigidity, each image was imported into Scion Image 4.0.2 and the maximum, minimum and polar second moments of area were calculated using a custom macro. DXA was used to measure BMC of the whole humerus. Longitudinal data was collected on 37 of the original cohort. Findings: Analysis of the entire cohort showed that exercise was associated with increased BMC and cortical area (8 to 14%), and bone rigidity (11 to 23%) (all p ≤0.05). The increase in cortical bone area was associated with periosteal expansion in the pre-pubertal years and endocortical contraction in the post-pubertal years (p ≤0.05). The exercise-related gains in bone mass that were accrued at the periosteum during the pre-pubertal years, did not increase with advanced maturation and/or additional training. Conclusion: Exercise increased cortical BMC by enhancing bone formation on the periosteal surface during the pre-pubertal years and on the endocortical surface in the post-pubertal years. However, bone strength only increased in response to bone acquisition on the periosteal surface. Therefore the pre-pubertal years appear to be the most opportune time for exercise to enhance BMC accrual and bone strength

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Hypertrophic Heart Rat (HHR) displays spontaneous cardiomyocyte hypertrophy in association with an apparent reduction in myocyte number in adulthood. This suggests the possibility of reduced hyperplasia or increased apoptosis during early cardiac development. The angiotensin AT1 and AT2 receptor subtypes have been implicated in both cellular growth and apoptosis, but the precise mechanisms are unclear. The aim of this study was to determine the relationship between cardiac AngII receptor expression levels and neonatal cardiomyocyte growth and apoptotic responses in the HHR compared with the Normal Heart Rat (NHR) control strain. Cardiac tissues were freshly harvested from male HHR and NHR at several developmental stages (p2 and 4, 6, 8, 12wks). HHR cardiac weight indices were considerably smaller than NHR at day 2 (4.330.19 vs 5.010.08 mg/g), but ‘caught-up’ to NHR by 4 weeks (5.100.15 vs 5.160.11 mg/g). By 12 weeks, HHR hearts were 27% larger than NHR. Tissue AT1A and AT2 mRNA expression levels were quantified by real-time RT-PCR. Relative to NHR, HHR neonatal hearts exhibited a 4.6-fold higher AT2/AT1 mRNA expression ratio. Cultured neonatal cardiomyocytes were infected with AT1A and/or AT2 receptor-expressing adenoviruses to achieve a physiological level of receptor expression (150 fmol receptor protein/mg total cell protein). In addition, to emulate receptor expression in neonatal HHR hearts, cells were co-infected with AT1A and AT2 receptors at a 4:1 ratio. Apoptosis incidence was studied by morphological analysis after 72 hours exposure to 0.1 M AngII. When infected with the AT1A receptor alone, a higher proportion of HHR myocytes appeared apoptotic than NHR (22.7 4.1% vs 1.1 0.6%, P 0.001). This implies that intrinsic differences predispose HHR cells to accentuated AT1-mediated apoptosis. Interestingly, the bax-1/bcl-2 mRNA expression ratio was significantly higher (50%) in HHR neonatal hearts. When cells were co-infected with AT1A and AT2 receptors, evidence of apoptosis in HHR cells virtually disappeared (0.4 0.1%). These findings suggest a novel capacity of AT2 receptors to counteract accentuated AT1A receptor-induced apoptosis in the HHR in early cardiac growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The virulence of the malaria parasite, Plasmodium falciparum, is due in large part to the way in which it modifies the membrane of its erythrocyte host. In this work we have used confocal microscopy and fluorescence recovery after photo-bleaching to examine the lateral mobility of host membrane proteins in erythrocytes infected with P falciparum at different stages of parasite growth. The erythrocyte membrane proteins band 3 and glycophorin show a marked decrease in mobility during the trophozoite stage of growth. Erythrocytes infected with a parasite strain that does not express the knob-associated histidine-rich protein show similar effects, indicating that this parasite protein does not contribute to the immobilization of the host proteins. Erythrocytes infected with ring-stage parasites exhibit intermediate mobility indicating that the parasite is able to modify its host prior to its active feeding stage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two-stage procedure of ball milling and annealing in air represents a prospective method of preparing nanorods of V2O5 with electrochemical properties suitable for the application in lithium-ion batteries. Commercially purchased V2O5 powder is milled in a ball mill as the first step of the synthesis. The as-milled precursor is subsequently annealed in air to produce the morphology of nanorods via solid-state recrystallization. We have recently investigated intermediate stages of the formation of nanorods, and this paper summarizes the synthesis method including the description of the current understanding of the growth mechanism. The obtained V2O5 nanorods have been assessed as an electrode material for both anodes and cathodes of lithium-ion batteries. When used in cathodes, the nanorods demonstrate a better retention of capacity upon cycling than that of the commercially available powder of V2O5. When used in anodes, the performances of nanorods and the reference V2O5 powder are similar to a large extent, which is related to a different operating mechanism of V2O5 in anodes. The experimentally observed capacity of V2O5 nanorods in an anode has stabilized at the level of about 450 mAh/g after few cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasmodium parasites remodel their vertebrate host cells by translocating hundreds of proteins across an encasing membrane into the host cell cytosol via a putative export machinery termed PTEX. Previously PTEX150, HSP101 and EXP2 have been shown to be bona fide members of PTEX.

Here we validate that PTEX88 and TRX2 are also genuine members of PTEX and provide evidence that expression of PTEX components are also expressed in early gametocytes, mosquito and liver stages, consistent with observations that protein export is not restricted to asexual stages. Although amenable to genetic tagging, HSP101, PTEX150, EXP2 and PTEX88 could not be genetically deleted in Plasmodium berghei, in keeping with the obligatory role this complex is postulated to have in maintaining normal blood-stage growth.

In contrast, the putative thioredoxin-like protein TRX2 could be deleted, with knockout parasites displaying reduced grow-rates, both in vivo and in vitro, and reduced capacity to cause severe disease in a cerebral malaria model. Thus, while not essential for parasite survival, TRX2 may help to optimize PTEX activity. Importantly, the generation of TRX2 knockout parasites that display altered phenotypes provides a much-needed tool to dissect PTEX function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of biomaterials in a biological environment is largely influenced by the surface properties of the biomaterials. In particular, grafted targeting ligands significantly impact the subsequent cellular interactions. The utilisation of a grafted epidermal growth factor (EGF) is effective for targeted delivery of drugs to tumours, but the amount of these biological attachments cannot be easily quantified as most characterization methods could not detect the extremely low amount of EGF ligands grafted on the surface of nanoparticles. In this study, hollow mesoporous silica nanoparticles (HMSNs) were functionalized with amine groups to conjugate with EGFs via carbodiimide chemistry. Time of flight secondary ion mass spectrometry (ToF-SIMS), a very surface specific technique (penetration depth <1.5 nm), was employed to study the binding efficiency of the EGF to the nanoparticles. Principal component analysis (PCA) was implemented to track the relative surface concentrations of EGFs on HMSNs. It was found that ToF-SIMS combined with the PCA technique is an effective method to evaluate the immobilization efficiency of EGFs. Based on this useful technique, the quantity and density of the EGF attachments that grafted on nanoparticles can be effectively controlled by varying the EGF concentration at grafting stages. Cell experiments demonstrated that the targeting performance of EGFR positive cells was affected by the number of EGFs attached on HMSNs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are now several examples of plant species engineered to synthesize and accumulate nutritionally important polyunsaturated fatty acids in their seed triacylglycerols (TAG). The utilization of TAG in germinating seeds of such transgenic plants was unknown. In this study, we examined the TAG utilization efficiency during seed germination in transgenic Arabidopsis seeds containing several examples of these fatty acids. Seed TAG species with native fatty acids had higher utilization rate than the TAG species containing transgenically produced polyunsaturated fatty acids. Conversely, quantification of the fatty acid components remaining in the total TAG after early stages of seed germination revealed that the undigested TAGs tended to contain elevated levels of the engineered polyunsaturated fatty acids (PUFA). LC-MS analysis further revealed asymmetrical mobilization rates for the individual TAG species. TAGs which contained multiple PUFA fatty acids were mobilized slower than the species containing single PUFA. The mobilized engineered fatty acids were used in de novo membrane lipid synthesis during seedling development.