26 resultados para Greenhouse emissions

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is commonly assumed that solar hot water systems save energy and reduce greenhouse emissions relative to conventional fossil fuel-powered systems. Very rarely has the life-cycle greenhouse emissions (including the embodied greenhouse emissions of manufacture) of solar hot water systems been analysed. The extent to which solar hot water systems can reduce emissions compared with conventional systems can be shown through a comparative life-cycle greenhouse emissions analysis. This method determined the time it takes for these net greenhouse emissions savings to occur, or the 'emissions payback period'. This paper presents the results of a life-cycle greenhouse emissions analysis of solar hot water systems in comparison with conventional hot water systems for a southern (Melbourne) and a northern (Brisbane) Australian city.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ratification of the Kyoto Protocol by most industrial nations will result in an international greenhouse emissions trading market by or before 2008. Calculating the quantity of embodied energy in commercial buildings has therefore taken on added significance because it is in the creation of energy that most greenhouse gas that causes global warming is released. For energy efficient commercial buildings in Australia, the embodied energy can typically represent between 10 and 20 years of operational energy. When greenhouse emissions trading is introduced in Australia the cost of energy will rise significantly, particularly electricity which relies primarily on burning fossil fuels for generation. This will affect not only the operating energy costs of buildings (light, power & heating/cooling) but also the cost of building materials and construction. Early estimates of the potential cost of future greenhouse emission permits in Australia vary between $IO/tonne to $180Itonne. This cost would be imposed primarily on the producers of energy and passed on by them to consumers via higher energy costs. For a typical commercial building this could lead to an increase in the total procurement cost of buildings of up to 20% due to the energy embodied during the construction or refurbishment of the building. To assist in evaluating these potential cost increases McKean & Park, Sinclair Knight Merz and Deakin University have developed a web-based Carbon Cost Calculator for commercial buildings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commuting to work is one of the most important and regular routines of transportation in towns and cities. From a geographic perspective, the length of people’s commute is influenced, to some degree, by the spatial separation of their home and workplace and the transport infrastructure. The rise of car ownership in Australia from the 1950s to the present was accompanied by a considerable decrease of public transport use. Currently there is an average of 1.4 persons per car in Australia, and private cars are involved in approximately 90% of the trips, and public transportation in only 10%. Increased personal mobility has fuelled the trend of decentralised housing development, mostly without a clear planning for local employment, or alternative means of transportation. Transport sector accounts for 14% of Australia’s net greenhouse gas emissions. Without further policy action, Australia’s emissions are projected to continue to increase. The Australian Federal Government and the new Department of Climate Change have recently published a set of maps showing that rising seas would submerge large parts of Victoria coastal region. Such event would lead to major disruption in planned urban growth areas in the next 50 years with broad scale inundation of dwellings, facilities and road networks. The Greater Geelong Region has well established infrastructure as a major urban centre and tourist destination and hence attracted the attention of federal and state governments in their quest for further development and population growth. As a result of its natural beauty and ecological sensitivity, scenarios for growth in the region are currently under scrutiny from local government as well as development agencies, scientists, and planners. This paper is part of a broad research in the relationship between transportation system, urban form, trip demand, and emissions, as a paramount in addressing the challenges presented by urban growth. Progressing from previous work focused on private cars, this present paper investigates the use of public transport as a mode for commuting in the Greater Geelong Region. Using a GIS based interaction model, it characterises the current use of the existing public transportation system, and also builds a scenario of increased use of the existing public transportation system, estimating potencial reductions in CO2 emissions. This study provides an improved understanding of the extent to which choices of transport mode and travel activity patterns, affect emissions in the context of regional networks. The results indicate that emissions from commuting by public transportation are significantly lower than those from commuting by private car, and emphasise that there are opportunities for large abatment in the greenhouse emissions from the transportation sector related to efforts in increasing the use of existing public transportation system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sustainability refers to having the ability to meet present needs without impacting on future generations to meet their needs. It incorporates social, economic and environmental aspects, and as a measure of sustainability, a range of sustainability indicators at the economy, regional, and individual level, have been suggested. However, given the complex and multidisciplinary nature of the concept, an interdisciplinary approach is necessary. Sustainability is not something that is easily measurable, and the aim of this paper is to present a conceptual framework for quantifying sustainability on the basis of social economic efficiency. According to neoclassical economic theory, economic activity will only be sustained by the private sector as long as it is profitable. However, private economic decisions do not always ensure long-term sustainability of environmental resources or production. The approach suggested here is to derive a measure of social economic efficiency as a measure of sustainability. For dairy farmers, increased productivity has been emphasized, while recognizing the need to reduce greenhouse emissions, pests and disease, nutrient run-off into the environment and degradation of the soil structure. By incorporating environmental and economic impacts, a fuller measure of efficiency, social economic efficiency, and sustainability of the farming practice can be developed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The research developed non-parametric approaches for measuring construction industry performance in sustainable development. The research results support the improvement of value added and the reduction of carbon emissions, which have positive environmental and economic implications in the Australian construction industry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

International pressure to reduce greenhouse gas emissions has forced many countries to look beyond 'demand side' measures. Several industry sectors are examining indirect requirements for energy and other resources that involve significant greenhouse gas emissions. The operation of buildings is responsible for approximately one quarter of greenhouse gas emissions in Australia. Moreover, he construction process consumes vast quantities of raw materials and complex goods and services each year. Each of the processes required for the provision of these products requires energy, and most of this is fossil fuel based. A national model of greenhouse gas emissions is required for residential building construction, to indicate where emissions reduction strategies should focus. A disaggregated input-output model is developed for the Australian residential building construction sector, and recommendations are made about how this model can be used in the development of policies of emissions mitigation for both the sector and individual residential buildings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Concern about the growth of greenhouse gas emissions in Victoria has prompted the introduction of legislation to improve the thermal performance of the residential building envelope. Unfortunately, the size of the house is not considered in the rating tool that underpins the legislation. The energy embodied in the constructional materials is also not considered although it too is directly related to the size of the house. Another intrinsic factor relating residential housing energy and greenhouse gas emissions is the location of the residence and the travel preferences of the homeowner. The relationship between the operational, embodied and travel energy associated with a typical residential scenario in Melbourne over the last 50 years is examined in this paper. The analysis found that by the year 2000, the energy associated with work-related travel (44%) now exceeds the operational energy (37%). In terms of greenhouse gas emissions, the contribution from travel energy is almost double that from operational energy (28%).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

According to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), the construction sector has the greatest potential for climate change mitigation. This work investigates the potential for climate change mitigation in naturally ventilated and mixed mode office buildings, by evaluating the range of influence of building design and occupants on greenhouse gas emissions as well as thermal and visual comfort.

Thermal comfort is evaluated according to the EN 15251 adaptive thermal comfort model, visual comfort is based on daylight autonomy and view. Parametric studies have been conducted based on building simulation for the climate of Athens, Greece. Input data are based on a literature review, and on results from a field study conducted among office occupants and architects in Athens.

The results show that the influence of occupants on greenhouse gas emissions is larger than the influence of building design. Energy saving office equipment, as well as active use of building controls for shading and lighting by occupants are crucial parameters regarding the reduction of CO2 emissions. In mixed mode buildings, the coefficient of performance of the cooling system is an important parameter as well. Regarding thermal and visual comfort, the influence of building design is predominant. A green building, well protected against heat from the sun and able to balance solar and internal heat gains, provides higher comfort levels and is less affected by the influence of occupants. In mixed mode buildings, building design is the predominant influence on the magnitude of cooling loads. A hot summer including heat waves can significantly reduce thermal comfort and increase the resulting greenhouse gas emissions. Green buildings are least affected by these influences.

The EN 15251 adaptive thermal comfort model provides a thermal comfort evaluation method valid throughout Europe. However, for the Mediterranean climate of Athens, Greece, most of the configurations investigated within this study do not meet the requirements according to this model. EN 15251 refers to an adaptive thermal comfort model for naturally ventilated and to a static model for mechanically ventilated buildings. For mixed mode buildings, the static model is recommended, but literature indicates that occupants in those buildings might be more tolerant towards higher temperatures. The hypothetical application of the EN 15251 adaptive thermal comfort model in mixed mode offices, as investigated in this study, shows potential for greenhouse gas emission savings. However, this influence is small compared to that of building design and occupants. Conclusions are drawn regarding the categorisation and exceeding criteria according to EN 15251 adaptive thermal comfort model for offices in a Mediterranean climate.

The results of this work show, that not only green buildings, but also green occupants can significantly contribute to the mitigation of the climate change. Mechanisms of the real estate market as well as the lifestyle of occupants are important influences in this context. Sustainability therefore refers to finding the right balance between occupant’s comfort expectations and resulting greenhouse gas emissions for a specific building, rather than optimisation of single parameters

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes a holistic approach to comfort and greenhouse gas emissions in mixed mode offices. It is based on parametric studies for a typical cellular office in the Mediterranean climate of Athens, Greece, using building simulation.

Considered parameters are the influence of different building design, varying occupant behaviour and internal heat loads, as well as of an exceptionally hot summer. Additionally, the performance of a cooling strategy following the comfort limits according to the EN 15251 adaptive model is compared with the common fixed cooling set point 22°C.

The performance of mixed mode offices is evaluated regarding thermal comfort, daylight autonomy and related greenhouse gas emissions. Results indicate strategies to improve sustainability in mixed mode offices in Athens, by balancing the influencing parameters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

According to the Intergovernmental Panel on Climate Change the buildings sector has the largest mitigation potential for CO2 emissions. Especially in office buildings, where internal heat loads and a relatively high occupant density occur at the same time with solar heat gains, overheating has become a common problem. In Europe the adaptive thermal comfort model according to EN 15251 provides a method to evaluate thermal comfort in naturally ventilated buildings. However, especially in the context of the climate change and the occurrence of heat waves within the last decade, the question arises, how thermal comfort can be maintained without additional cooling, especially in warm climates. In this paper a parametric study for a typical cellular naturally ventilated office room has been conducted, using the building simulation software EnergyPlus. It is based on the Mediterranean climate of Athens, Greece. Adaptive thermal comfort is evaluated according to EN 15251. Variations refer to different building design priorities, and they consider the variability of occupant behaviour and internal heat loads by using an ideal and worst case scenario. The influence of heat waves is considered by comparing measured temperatures for an average and an exceptionally hot year within the last decade. Since the use of building controls for shading affects thermal as well as visual comfort, daylighting and view are evaluated as well. Conclusions are drawn regarding the influence and interaction of building design, occupants and heat waves on comfort and greenhouse gas emissions in naturally ventilated offices, and related optimisation potential.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many cities around the world are looking for ways to reduce their per capita greenhouse gas emissions. The outward growth of cities from a central business district, typical of many cities around the world, is often seen as working against this goal and as unsustainable. This is especially the case in circumstances where this growth is not supported by the necessary infrastructure, often resulting in an increase in the use of private transport. However, alternative scenarios to contain the outward growth are being proposed. This paper provides a comparison of the energy demand and greenhouse gas emissions between typical detached outer-suburban housing currently being built in Australia's major cities and inner-city and -suburban apartments, which are increasingly seen as a legitimate alternative to the housing that is currently being built on our outer city fringes. By analysing the energy demand associated with the construction and operation of each housing type and for occupant travel it was found that the location of the housing and its size are the dominant factors determining energy use and greenhouse gas emissions. The findings from this analysis provide useful information for policy-makers in planning the development of our cities into the future, when faced with a growing population and an increasing need to minimise greenhouse gas emissions.