60 resultados para Grain boundary scattering

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigates the relationship between the strain rate and the ductility and the underlying deformation mechanisms in an ultrafine-grained Al6082 alloy. At room temperature the uniform elongation of the material exhibits a marked increase with decreasing strain rate. This effect is related to the activation of micro shear banding, which is controlled by grain boundary sliding. The contribution of these mechanisms to uniform elongation is estimated. It is proposed that the grain boundary sliding suppresses the transformation of micro shear bands into macro shear bands. The activity of other deformation mechanisms during plastic deformation of the ultrafine-grained material is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plastic anisotropy of magnesium alloy sheet drops rapidly with test temperature. It has previously been suggested that this may be due to an increase in the activity of (c+a) dislocations. The present note points out that the phenomenon may result, instead, from the action of grain boundary sliding. This can explain the strong effect of grain size on anisotropy. Furthermore, it points to a new avenue for alloy development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the characterization of grain boundary (GB) segregation in an Fe-28Mn-0.3C (wt.%) twinning-induced plasticity (TWIP) steel. After recrystallization of this steel for 24 h at 700 °C, ∼50% general grain boundaries (GBs) and ∼35% Σ3 annealing twin boundaries were observed (others were high-order Σ and low-angle GBs). The segregation of B, C and P and traces of Si and Cu were detected at the general GB by atom probe tomography (APT) and quantified using ladder diagrams. In the case of the Σ3 coherent annealing twin, it was necessary to first locate the position of the boundary by density analysis of the atom probe data, then small amounts of B, Si and P segregation and, surprisingly, depletion of C were detected. The concentration of Mn was constant across the interface for both boundary types. The depletion of C at the annealing twin is explained by a local change in the stacking sequence at the boundary, creating a local hexagonal close-packed structure with low C solubility. This finding raises the question of whether segregation/depletion also occurs at Σ3 deformation twin boundaries in high-Mn TWIP steels. Consequently, a previously published APT dataset of the Fe-22Mn-0.6C alloy system, containing a high density of deformation twins due to 30% tensile deformation at room temperature, was reinvestigated using the same analysis routine as for the annealing twin. Although crystallographically identical to the annealing twin, no evidence of segregation or depletion was found at the deformation twins, owing to the lack of mobility of solutes during twin formation at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three-dimensional interfacial grain boundary network in a fully austenitic high-manganese steel was studied as a function of all five macroscopic crystallographic parameters (i.e. lattice misorientation and grain boundary plane normal) using electron backscattering diffraction mapping in conjunction with focused ion beam serial sectioning. The relative grain boundary area and energy distributions were strongly influenced by both the grain boundary plane orientation and the lattice misorientation. Grain boundaries terminated by (1 1 1) plane orientations revealed relatively higher populations and lower energies compared with other boundaries. The most frequently observed grain boundaries were {1 1 1} symmetric twist boundaries with the Σ3 misorientation, which also had the lowest energy. On average, the relative areas of different grain boundary types were inversely correlated to their energies. A comparison between the current result and previously reported observations (e.g. high-purity Ni) revealed that polycrystals with the same atomic structure (e.g. face-centered cubic) have very similar grain boundary character and energy distributions. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The properties of interfaces depend not only on the lattice misorientation, but also on the interface plane orientation. Extensive studies of grain boundaries led to the conclusion that in systems evolving by grain growth, the relative areas of different grain boundary planes are inversely correlated to their relative energies. In other words, the low energy grain boundary planes make up a larger part of the population than the higher energy grain boundary planes. The hypothesis of this work is that the interface plane orientation distribution in transformed microstructures depends more on the mechanism of formation than on the relative energy. After a discussion of methods for measuring interface plane orientations, results will be presented for lath martensite in a low carbon steel and for martensite in a Ti-6Al-4V alloy processed in two different ways to promote a displacive transformation in one case and a diffusional transformation in the other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current study, a series of thermomechanical routes were used to produce different microstructures (i.e., ferrite and martensite) in low-carbon low alloy steels. The five-parameter grain boundary character distribution was measured for all microstructures. The thermomechanical processing route altered the texture of the fully ferritic microstructure and significantly influenced the anisotropy of the grain boundary character distribution. Generally, the population of (111) planes increased with an increase in the γ-fiber texture for the ferritic microstructure, but it did not change the shape of the grain boundary plane distribution at specific misorientations. The most commonly observed boundaries in the fully ferritic structures produced through different routes were {112} symmetric tilt boundaries with the Σ3 = 60 deg/[111] misorientation; this boundary also had a low energy. However, the grain boundary plane distribution was significantly changed by the phase transformation path (i.e., ferrite vs martensite) for a given misorientation. In the martensitic steel, the most populous Σ3 boundary was the {110} symmetric tilt boundary. This results from the crystallographic constraints associated with the shear transformation (i.e., martensite) rather than the low-energy interface that dominates in the diffusional phase transformation (i.e., ferrite).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Within each columnar grain of a metallic film, the resistance to dislocation glide varies in function of the orientation of the slip plane with regard to the grain long axis. Plastic slip is impeded across grain boundaries and this contributes to the anisotropy of the overall mechanical response. A simplified (Taylor-type) crystal plasticity model is proposed that accounts for such effect of grain shape on the slip system selection. Assuming that dislocation density gradients are normal to the grain boundaries, backstresses developed at the onset of plasticity are estimated based on two definitions of the effective grain boundary spacing ‘‘seen’’ by individual slip systems. The first one reduces to the mean area-to-perimeter ratio of cross-sections of the grain cut parallel to the slip plane. Closed-form expressions of the average backstresses developed inside grains with spheroidal shapes are introduced in the crystal hardening law. The model reproduces the very high plastic anisotropy of electro-deposited pure iron with a strong c-fiber and a refined columnar grain structure [Yoshinaga, N., Sugiura, N., Hiwatashi, S., Ushioda, K., Kada, O., 2008. Deep drawability of electro-deposited pure iron having an extremely sharp h111i//ND texture. ISIJ Int. 48, 667–670]. It also provides valid estimates of the texture development and the influence of grain size on the yield strength.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hot torsion testing of a C–Mn–V steel was used to study the evolution of  ultrafine ferrite (UFF) formation by dynamic strain-induced transformation (DSIT) in conjunction with air-cooling for two prior austenite grain sizes. This study evaluated not only the evolution of DSIT ferrite during straining, but also the grain growth behaviour of DSIT ferrite grains during post-deformation cooling. For both austenite grain sizes, the DSIT ferrite initially nucleated on/or near prior austenite grain boundaries at an early stage of transformation followed by the grain interiors. The prior austenite grain size affected the distribution of DSIT ferrite nucleation sites at an early stage of transformation and the subsequent coarsening behaviour of the grain boundary (GB) and the intragranular ferrite (IG) grains during post-deformation cooling. For the fine prior austenite grain size, the distribution of DSIT ferrite grains was more homogenous compared with the coarse austenite and the coarsening occurred not only in the GB ferrite grains but also in the IG ferrite grains. However, the ferrite coarsening mostly occurred for the IG ferrite rather than the GB ferrite grains in the coarse austenite. The result suggests that normal grain growth occurred during the overall transformation in the GB ferrite grains for the coarse initial austenite grain size.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study, wedge-shape samples were used to study the effect of strain induced transformation on the formation of ultrafine grained structures in steel by single pass rolling. The results showed two different transition strains for bainite formation and ultrafine ferrite (UFF) formation in the surface layer of strip at reductions of 40% and 70%, respectively, in a plain carbon steel. The bainitic microstructure formed by strain induced bainitic transformation during single pass rolling was also very fine. The evolution of UFF formation in the surface layer showed that ferrite coarsening is significantly reduced through strain induced transformation combined with rapid cooling in comparison with the centre of the strip. In the surface, the ferrite coarsening mostly occurred for intragranular nucleated grains (IG) rather than grain boundary (GB) ferrite grains. The results suggest that normal grain growth occurred during overall transformation in the GB ferrite grains. In the centre of the strip, there was significantly more coarsening of ferrite grains nucleated on the prior austenite grain boundaries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A C–Mn–V steel was used to study ultrafine ferrite formation (1–3 μm) through dynamic strain-induced transformation (DSIT) using hot torsion experiments. A systematic study determined the critical strain for the start of DSIT (C,DSIT), although this may not lead to a fully ultrafine microstructure. Therefore, the strain to produce an ultrafine ferrite (UFF) as final microstructure (C,UFF) during deformation was also determined. In addition, the effect of thermomechanical parameters such as deformation temperature, prior austenite grain size, strain rate and cooling rate on C,DSIT and C,UFF has been evaluated. DSIT ferrite nucleated on prior austenite grain boundaries at an early stage of straining followed by intragranular nucleation at higher strains. The prior austenite grain size affected the distribution of DSIT ferrite nucleation sites at an early stage of transformation and the subsequent coarsening behaviour of the grain boundary and intragranular ferrite grains during post-deformation cooling. Also, C,DSIT and C,UFF increased with an increase in the prior austenite grain size and deformation temperature. The post-deformation cooling had a strong effect not only on C,UFF but also the UFF microstructure (i.e. final ferrite grain size and second phase characteristics).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four different tool steel materials, P20, H13, M2 and D2, were nitrocarburised at 570°C in a fluidised bed furnace. The reactive diffusion of nitrogen and carbon into the various substrate microstructures is compared and related to the different alloy carbide distributions. The effect of carbon bearing gas (carbon dioxide, natural gas) on carbon absorption is reported, as well as its influence on compound layer growth and porosity. Partial reduction of Fe3O4 at the surface resulted in the formation of a complex, epsi-nitride containing oxide layer. In H13, carbon was deeply absorbed throughout the entire diffusion zone, affecting the growth of grain boundary cementite, nitrogen diffusivity and the sharpness of the compound layer: diffusion zone interface. When natural gas was used, carbon became highly concentrated in the compound layer, while surface decarburisation occurred with carbon dioxide. These microstructural effects are discussed in relation to hardness profiles, and compound layer hardness and ductility. The surfaces were characterised using glow discharge optical emission spectroscopy, optical and scanning electron microscopy and X-ray diffraction.