20 resultados para Godfrey, of Bouillon, ca. 1060-1100.

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

IP a The paper examines the application of the Resource-Based View of strategy (RBV) to the Australian floral industry. Despite the RBV's successful application to research in a number of discipline areas and the formalisation of its relationship with Competitive Advantage (CA) 15 years ago, the empirical support for the benefit of the RBV and development of research constructs has been inadequate. This has been partly due to the difficulty of identifying and separating the contribution of resources. The RBV literature is now consistent in the criteria required of a resource for CA and identifies a range of empirical research objectives (e.g. the need for contextual constructs), data evaluation focuses (e.g. measuring the impact of management, process, regional and scale affects) and results objectives (such as identifying the causal structure of resources). Research was conducted in the Australian floral industry to produce supporting generalisable data and constructs for the RBV. This industry is well bounded with several strongly differentiating resources and operates in a global market environment, which is necessary for these research objectives. Six hypotheses were examined; (1) the use of resources as the input of the CA, (2) the impact of the development process on resources, (3) the impact of management control on the development of resources (4) the impact on capability of management, process, region and scale, (5) the impact of resource development maturity on the approach to resource development and (6) the possibility of evaluating individual resources according to various criteria. The data was collected using selected participant interviews, with validation of conclusions by industry experts. It was analysed using content analysis, comparative analysis and cognitive mapping. The research determined that organisations in the Australian floral industry possessed important resources including geography, skills, technology, R&D, supply chains and production costs. These contributed to four CA creating production outputs; quality, capacity, reliability and customer convenience. The research findings supported hypotheses 1, 3, 4, 5 and 6. The lack of support for the two remaining hypotheses, relating to the process of resource development, may be explained by the low resource development maturity of the industry which masks the impact of the resource development process. The results also determined that one resource could contribute to a number of CAs and that resources not meeting all of the normal RBV CA criteria could still provide a CA in an industry where few resources met all criteria. It was postulated that these resources’ contribution to competitive was not durable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi scale CAFE model for the prediction of initiation and propagation of the micro shear bands and shear bands in metallic materials subjected to plastic deformation is presented. The CAFE approach is the combination of the Cellular Automata (CA) and the Finite Element (FE) methods. The application of the developed CAFE model to analyze material flow during extrusion is the objective of the present work. The proposed CAFE approach is applied in this work to simulation of the extrusion with flat face and convex dies and to investigate differences in the material flow. The initial FE meshes with the set of the CA point are generated for the numerical tests and the results of the metal flow predicted by the CAFE method are presented in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, the influence of calcium ion deposition on the apatite-inducing ability of porous titanium(Ti) was investigated in a modified simulated body fluid (m-SBF). Calcium hydroxide (Ca(OH)2) solutions with five degrees of saturation were used to hydrothermally deposit Ca ions on porous Ti with a porosity of 80%. Apatite-inducing ability of the Ca-ion-deposited porous Ti was evaluated by soaking them in m-SBF for up to 14 days. Scanning electron microscopy (SEM) and X-ray diffractometry (XRD) confirmed that a thin layer of calcium titanate (CaTiO3)/calcium oxide (CaO) mixture with a nanostructured porous network was produced on porous Ti substrates after hydrothermal treatment at 200 °C for 8 h. X-ray photoelectron spectroscopy results demonstrated that the content of the Ca ions deposited on Ti and the thickness of the CaTiO3/CaO layer increased with increasing saturation degree of the Ca(OH)2 solution. The thickest (over 10 nm) CaTiO3/CaO layer with the highest Ca content was achieved on the Ti treated in an oversaturated Ca(OH)2 solution (0.2 M). SEM, XRD, transmission electron microscopy and Fourier transformed infrared spectroscopy analysis indicated that the porous Ti samples deposited with the highest content of Ca ions exhibited the best apatite-inducing ability, producing a dense and complete carbonated apatite coating after a 14 day soaking in m-SBF. The present study illustrated the validity of using Ca ion deposition as a pre-treatment to endow desirable apatite-inducing ability of porous Ti for bone tissue engineering applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium phosphate (Ca-P) coatings were deposited on Ti substrates by a biomimetic method from m-SBF and 10× SBF, respectively. Comparative study of microstructures and bond strengths of the Ca-P coatings deposited from those different SBFs was carried out. Effect of the surface roughness of the substrates on the bond strength of the Ca-P coatings was also studied. Scanning electron microscopy (SEM), X-ray diffractometry (XRD), Fourier transformed infrared spectroscopy (FTIR), inductive coupled plasma spectrometry (ICP) and thermogravimetry (TG) were used to characterize the Ca-P coatings. The bond strengths between the coatings and Ti substrates were measured using an adhesive strength test. Results indicated that the ionic concentrations of the SBFs and the surface roughness of the substrate had a significant influence on the formation, morphology and bond strength of the Ca-P precipitates. The induction period of time to deposit a complete Ca-P layer from the m-SBF is much longer, but the Ca-P coating is denser and has higher bond strength than that formed from the 10× SBF. The Ti with a surface roughness of Ra 0.64 µm and Rz 2.81 µm favoures the formation of a compact Ca-P coating from the m-SBF with the highest bond strength of approximately 15.5 MPa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, Mg-xCa (x = 0.5, 1.0, 2.0, 5.0, 10.0, 15.0 and 20.0 %, wt.%, hereafter) and Mg-1Ca-1Y alloys were investigated as new biodegradable bone implant materials. The compressive strength, ultimate strength and hardness of the Mg-Ca alloys increased, whilst the corrosion rate and biocompatibility decreased, with the increase of the Ca content in the Mg-Ca alloys; higher Ca content caused the Mg-Ca alloy to become brittle. Solutions of simulated body fluid (SBF) and modified minimum essential media (MMEM) with the immersion of Mg-xCa and Mg-1Ca-1Y alloys showed strong alkalisation. The yttrium addition to the Mg-Ca alloys does not improve the corrosion resistance of the Mg-1Ca-1Y alloy as expected compared to the Mg-1Ca alloy. It is suggested that Mg-Ca alloys with Ca additions less than 1.0 wt.% exhibited good biocompatibility and low corrosion rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilizing protein dystrophin1, 2, 3. Dystrophin-deficient muscle fibres are fragile and susceptible to an influx of Ca<sup>2+, which activates inflammatory and muscle degenerative pathways4, 5, 6. At present there is no cure for DMD, and existing therapies are ineffective. Here we show that increasing the expression of intramuscular heat shock protein 72 (Hsp72) preserves muscle strength and ameliorates the dystrophic pathology in two mouse models of muscular dystrophy. Treatment with BGP-15 (a pharmacological inducer of Hsp72 currently in clinical trials for diabetes) improved muscle architecture, strength and contractile function in severely affected diaphragm muscles in mdx dystrophic mice. In dko mice, a phenocopy of DMD that results in severe spinal curvature (kyphosis), muscle weakness and premature death7, 8, BGP-15 decreased kyphosis, improved the dystrophic pathophysiology in limb and diaphragm muscles and extended lifespan. We found that the sarcoplasmic/endoplasmic reticulum Ca<sup>2+-ATPase (SERCA, the main protein responsible for the removal of intracellular Ca<sup>2+) is dysfunctional in severely affected muscles of mdx and dko mice, and that Hsp72 interacts with SERCA to preserve its function under conditions of stress, ultimately contributing to the decreased muscle degeneration seen with Hsp72 upregulation. Treatment with BGP-15 similarly increased SERCA activity in dystrophic skeletal muscles. Our results provide evidence that increasing the expression of Hsp72 in muscle (through the administration of BGP-15) has significant therapeutic potential for DMD and related conditions, either as a self-contained therapy or as an adjuvant with other potential treatments, including gene, cell and pharmacological therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Layered oxides of Sr4Fe4Co2O13 (SFC2) which contains alternating perovskite oxide octahedral and polyhedral oxide double layers are attractive for their mixed ionic and electronic conducting and oxygen reduction reaction properties. In this work, we used the EDTA–citrate synthesis technique to prepare SFC2 and vary the calcination temperature between 900 and 1100 _C to obtain SFC2, containing different phase content of perovskite (denoted as SFC-P) and (Fe,Co) layered oxide phases (SFC-L). Rietveld refinements show that the SFC-P phase content increased from _39 wt% to _50 wt% and _61 wt% as the calcination temperature increased from 900 _C (SFC2-900) to 1000 _C (SFC2-1000) and 1050 _C (SFC2-1050). At 1100 _C (SFC2-1100), SFC-P became the dominant phase. The oxygen transport properties (e.g. oxygen chemical diffusion coefficient and oxygen permeability), electrical conductivity and oxygen reduction reaction activity is enhanced in the order of SFC2-1000, SFC2-1100 and SFC2-1050. The trend established here therefore negates the hypothesis that the perovskite phase content correlates with the oxygen transport property enhancement. The results suggest instead that there is an optimum composition value (e.g. 61 wt% of SFC-L for SFC2-1050 in this work) on which synergistic effects take place between the SFC-P and SFC-L phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects of the emulsifying conditions and emulsifier type on production of water-in-oil (W/O) emulsions encapsulating ascorbic acid derivatives by microchannel (MC) emulsification. The ascorbic acid derivatives added in a dispersed aqueous phase are calcium ascorbate (AA-Ca) and ascorbic acid 2-glucoside (AA-2G). The continuous phase used was decane, soybean oil or their mixture, containing 5% (w/w) tetraglycerin monolaurate condensed ricinoleic acid ester or sorbitan trioleate. A hydrophobized silicon MC array plate (model: MS407) with a channel depth of 7μm was used for MC emulsification. The use of MC emulsification enabled successful encapsulation of AA-Ca and AA-2G in monodisperse W/O emulsion droplets with coefficients of variation (CV) less than 7%. Their average droplet diameter (dav) increased with increasing the continuous-phase viscosity that is similar or higher than the dispersed-phase viscosity. The dav and CV of the resultant monodisperse W/O emulsions were unaffected by the dispersed-phase flow rate below critical values of 1.2-1.6mLh-1 when using decane as the continuous-phase medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydroxyapatite (HAp) is commonly used to coat titanium alloys (Ti–6Al–4V) for orthopedic implants. However, their poor adhesion strength and insufficient long-term stability limit their application. Novel sphene (CaTiSiO5) ceramics possess excellent chemical stability and cytocompatibility. The aim of this study is to use the novel sphene ceramics as coatings for Ti–6Al–4V. The sol–gel method was used to produce the coatings and the thermal properties, phase composition, microstructure, thickness, surface roughness and adhesion strength of sphene coatings were analyzed by differential thermal analysis–thermal gravity (DTA–TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), atom force microscopy (AFM) and scratch test, respectively. DTA analysis confirmed that the temperature of the sphene phase formation is 875 °C and XRD analysis indicated pure sphene coatings were obtained. A uniform structure of the sphene coating was found across the Ti–6Al–4V surface, with a thickness and surface roughness of the coating of about 0.5–1 μm and 0.38 μm, respectively. Sphene-coated Ti–6Al–4V possessed a significantly improved adhesion strength compared to that for HAp coating and their chemical stability was evaluated by testing the profile element distribution and the dissolution kinetics of calcium (Ca) ions after soaking the sphene-coated Ti–6Al–4V in Tris–HCl solution. Sphene coatings had a significantly improved chemical stability compared to the HAp coatings. A layer of apatite formed on the sphene-coated Ti–6Al–4V after they were soaked in simulated body fluids (SBF). Our results indicate that sol–gel coating of novel sphene onto Ti–6Al–4V possessed improved adhesion strength and chemical stability, compared to HAp-coated Ti–6Al–4V prepared under the same conditions, suggesting their potential application as coatings for orthopedic implants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both physical and psychological stressors recruit catecholamine cells (CA) located in the ventrolateral medulla (VLM) and the nucleus of the solitary tract (NTS). In the case of physical stressors, this effect is initiated by signals that first access the central nervous system at or below the level of the medulla. For psychological stressors, however, CA cell recruitment depends on higher structures within the neuraxis. Indeed, we have recently provided evidence of a pivotal role for the medial amygdala (MeA) in this regard, although such a role must involve a relay, as MeA neurons do not project directly to the medulla. However, some of the MeA neurons that respond to psychological stress have been found to project to the hypothalamic paraventricular nucleus (PVN), a structure that provides significant input to the medulla. To determine whether the PVN might regulate medullary CA cell responses to psychological stress, animals were prepared with unilateral injections of the neurotoxin ibotenic acid into the PVN (Experiment 1), or with unilateral injections of the retrograde tracer wheat germ agglutinin-gold (WGA-Au) into the CA cell columns of the VLM or NTS (Experiment 2). Seven days later, animals were subjected to a psychological stressor (restraint; 15 minutes), and their brains were subsequently processed for Fos plus appropriate cytoplasmic markers (Experiment 1), or Fos plus WGA-Au (Experiment 2). PVN lesions significantly suppressed the stress-related induction of Fos in both VLM and NTS CA cells, whereas tracer deposits in the VLM or NTS retrogradely labeled substantial numbers of PVN cells that were also Fos-positive after stress. Considered in concert with previous results, these data suggest that the activation of medullary CA cells in response to psychological stress may involve a critical input from the PVN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cross-section average (CA) augmentation approach of Pesaran (2007) and Pesaran et al. (2013), and the principal components-based panel analysis of non-stationarity in idiosyncratic and common components (PANIC) of Bai and Ng (2004, 2010) are among the most popular “second-generation” approaches for cross-section correlated panels. One feature of these approaches is that they have different strengths and weaknesses. The purpose of the current paper is to develop PANICCA, a combined approach that exploits the strengths of both CA and PANIC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigated the microstructural characterization and mechanical properties of Mg-Zr-Ca alloys prepared by hot-extrusion for potential use in biomedical applications. Mg-Zr-Ca alloys were fabricated by commercial pure Mg (99.9%), Ca (99.9%), and master Mg-33% Zr alloy (mass%). The microstructural characterization of the hot-extruded Mg-Zr-Ca alloys was examined by X-ray diffraction analysis and optical microscopy, and the mechanical properties were determined from tensile tests. The experimental results indicate that the hot-extruded Mg-Zr-Ca alloys with 1 mass% Ca are composed of one single phase and those alloys with 2 mass% Ca consist of both Mg2Ca and α phase. The hot-extruded Mg-Zr-Ca alloys exhibit equiaxed granular microstructures and the hot-extrusion process can effectively increase both the tensile strength and ductility of Mg-Zr-Ca alloys. The hot-extruded Mg-1Zr-1Ca alloy (mass%) exhibits the highest strength and best ductility among all the alloys, and has much higher strength than the human bone, suggesting that it has a great potential to be a good candidate for biomedical application.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigated the microstructures and compressive properties of hot-rolled Mg-Zr-Ca alloys for biomedical applications. The microstructures of the Mg-Zr-Ca alloys were examined by X-ray diffraction analysis and optical microscopy, and the compressive properties were determined from compressive tests. The experimental results indicate that the hot-rolled Mg-Zr-Ca alloys with 1% Ca are composed of one single α phase and those alloys with 2% Ca consist of both Mg2Ca and α phase. The hot-rolled Mg-Zr-Ca alloys exhibit typical elongated microstructures with obvious fibrous stripe, and have much higher compressive strength and lower compressive modulus than pure Mg. All the studied alloys have much higher compressive yield strength than the human bone (90~140 MPa) and comparable modulus with the human bone, suggesting that they have a great potential to be good candidates for biomedical applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The microstructures, mechanical properties, corrosion behaviour and biocompatibility of the Mg-Zr-Ca alloys have been investigated for potential use in orthopaedic applications. The microstructures of the alloys were examined using X-ray diffraction analysis, optical microscopy and scanning electron microscopy. The mechanical properties of Mg-Zr-Ca alloys were determined from compressive tests. The corrosion behaviour has been investigated using an immersion test and electrochemical measurement. The biocompatibility was evaluated by cell growth factor using osteoblast-like SaOS2 cell. The experimental results indicate that the hot-rolled Mg-Zr-Ca alloys exhibit much finer microstructures than the as-cast Mg-Zr-Ca alloys which show coarse microstructures. The compressive strength of the hot-rolled alloys is much higher than that of the as-cast alloys and the human bone, which would offer appropriate mechanical properties for orthopaedic applications. The corrosion resistance of the alloys can be enhanced significantly by hot-rolling process. Hot-rolled Mg-0.5Zr-1Ca alloy (wt %) exhibits the lowest corrosion rate among all alloys studied in this paper. The hot-rolled Mg-0.5Zr-1Ca and Mg-1Zr-1Ca alloys exhibit better biocompatibility than other studied alloys and possess advanced mechanical properties, corrosion resistance and biocompatibility, suggesting that they have a great potential to be good candidates for orthopaedic applications. © 2012 Springer Science+Business Media New York.